
Print and None

(Demo)

None Indicates that Nothing is Returned

The special value None represents nothing in Python

A function that does not explicitly return a value will return None

Careful: None is not displayed by the interpreter as the value of an expression

4

>>> def does_not_return_square(x):
... x * x

...
>>> does_not_return_square(4)

>>> sixteen = does_not_return_square(4)
>>> sixteen + 4

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'

The name sixteen
is now bound to
the value None

No return

None value is not displayed

abs

Pure Functions & Non-Pure Functions

-2
2

-2
None

print

Python displays the output “-2”

2, 100
1267650600228229401496703205376

pow

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

Return value

A side effect isn't a
value; it's anything
that happens as a
consequence of

calling a function

Returns None!

5

2 Arguments

(Demo)

Nested Expressions with Print

None
print(print(1), print(2))

func print(...)

print(...):1
None

display “1”

print(...):2
None

display “2”

print(...):None, None
None

display “None None”

print(1)

func print(...) 1

None
print(2)

2

None

6

Does not get
displayed

func print(...)

Life Cycle of a User-Defined Function

Def statement:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

Def
statement

Formal parameter

 Body

Return
expression

(return statement)

A new function is created!

Name bound to that function
in the current frame

 operand: 2+2
 argument: 4

Operator & operands evaluated

Function (value of operator)
called on arguments  
(values of operands) 

What happens?

 operator: square
 function: func square(x)

Signature

4

16

A new frame is created!

Parameters bound to arguments

Body is executed in that new
environment

Argument

Return value

Name

8

Miscellaneous Python Features

Division
Multiple Return Values

Source Files
Doctests

Default Arguments

(Demo)

Conditional Statements

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Compound statements:

Statements

Statement

Suite

Clause
The first header determines a
statement’s type

The header of a clause
“controls” the suite that
follows

def statements are compound
statements

16

A statement is executed by the interpreter to perform an action

Compound Statements

Compound statements:

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Execution Rule for a sequence of statements:

• Execute the first statement

• Unless directed otherwise, execute the rest

Suite

A suite is a sequence of
statements

To “execute” a suite means to
execute its sequence of
statements, in order

17

Conditional Statements

1 statement,
3 clauses, 
3 headers,
3 suites

Each clause is considered in order.

1. Evaluate the header's expression.

2. If it is a true value,  
execute the suite & skip the remaining clauses.

18

Syntax Tips:

1. Always starts with "if" clause.

2. Zero or more "elif" clauses.

3. Zero or one "else" clause, 
always at the end.

(Demo)

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 elif x == 0:
 return 0
 else:
 return x

Execution Rule for Conditional Statements:

Boolean Contexts

19

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 elif x == 0:
 return 0
 else:
 return x

George Boole

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 elif x == 0:
 return 0
 else:
 return x

Boolean Contexts

False values in Python: False, 0, '', None

True values in Python: Anything else (True)

(more to come)

George Boole

Read Section 1.5.4!

20

Two boolean contextsTwo boolean contexts

Reading: http://composingprograms.com/pages/15-control.html#conditional-statements

George Boole

While Statements

1. Evaluate the header’s expression.

2. If it is a true value,  
 execute the (whole) suite, 
 then return to step 1.

1 2 3
1 3 6

22

(Demo)

Execution Rule for While Statements:

Iteration Example

fib

n

pred
curr

k

5

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # 0th and 1st Fibonacci numbers
 k = 1 # curr is the kth Fibonacci number
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

!5

The next Fibonacci number is the sum of
the current one and its predecessor

12345
Go Bears!

Return

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

!4

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

def end(n, d):
 """Print the final digits of N in reverse order until D is found.

 >>> end(34567, 5)
 7
 6
 5
 """
 while n > 0:
 last, n = n % 10, n // 10
 print(last)
 if d == last:
 return None (Demo)

Designing Functions

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

!9

def square(x):
 """Return X * X."""

x is a number

square returns a non-
negative real number

square returns the
square of x

A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations

!10

Don’t repeat yourself (DRY): Implement a process just once, but execute it many times

>>> round(1.23, 1)
1.2

>>> round(1.23, 0)
1

>>> round(1.23, 5)
1.23

>>> round(1.23)
1

(Demo)

Generalization
Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

Finding common structure allows for shared implementation

!12

(Demo)

Control

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

!8

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

if_(________, ________, ________)

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite

This function
doesn't exist

def if_(c, t, f):
 if c:
 t
 else:
 f

"if" header
expression

"if"
suite

"else"
suite

Evaluation Rule for Call Expressions:

1. Evaluate the operator and then the
operand subexpressions

2. Apply the function that is the
value of the operator  
to the arguments that are the
values of the operands

(Demo)

Control Expressions

Logical Operators

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <left>.

2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

1. Evaluate the subexpression <left>.

2. If the result is a true value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

!10

(Demo)

Conditional Expressions

A conditional expression has the form

<consequent> if <predicate> else <alternative>

Evaluation rule:

1. Evaluate the <predicate> expression.

2. If it's a true value, the value of the whole expression is the value of the <consequent>.

3. Otherwise, the value of the whole expression is the value of the <alternative>.

!11

>>> x = 0
>>> abs(1/x if x != 0 else 0)
0

