The Closure Property of Data Types

Box-and-Pointer Notation

- A nethod for combining data values satisfies the closure property if: The result of combination can itself be combined using the sane method - Closure is powerful because it permits us to create hierarchical structures - Hierarchical structures are made up of parts, which thenselves are made up
of parts, and so on ists can contain lists as elements (in addition to anything else)

Interactive Diagran

Box-and-Pointer Notation in Environment Diagrams
Lists are represented as a row of index-labeled adjacent boxes, one per elenent
Each box either contains a prinitive value or oints to a compound value

pair $=[1,2]$

Slicing Creates New Values

Sequence Aggregation

Several built-in functions take iterable arguments and aggregate them into a value
sun(iterablel, start) \rightarrow value

With a s ingle iterable argument, return its largest ite
With two or more arguments, return the largest argunent.
\cdot all (iterable) \rightarrow bool
Return True if bool (x) is True for all values x in the iterable.
If the iterable is empty, return True.

Tree Abstraction

Recursive description (wooden trees): Relative description (fanily trees):
A tree has a root and a list of branches
Each branch is a tree $\quad \begin{aligned} & \text { Each location in a tree is call } \\ & \text { Each node has a labee value }\end{aligned}$
A tree with zero branches is called a leaf $\quad \begin{aligned} & \text { Each node has a abel value } \\ & \text { One node can be the parent/child of another }\end{aligned}$
People often refer to values by their locations: "each parent is the sum of its children"

plementing the Tree Abstraction

def tree(label, branches=[1):
return [labell + branches
$\underset{\substack{\text { def label (tree): } \\ \text { return tree } \\ \text { 00] }}}{ }$
def branches $(t$ ree) $)$
return treel $1: 1$

Tree Processing Uses Recursion
Processing a leaf is often the base case of a tree processing function
The recursive case typically makes a recursive call on each branch, then aggregates
"" "Count the lea
if is_leaf (t)):
return 1
else:
branch_counts $=$ Icoun__leaves (b) for b in branches (t)]
return summbranch_counts)
(Demo)

Discussion Question
Inplement leaves, which returns a list of the leaf labels of a tree
Hint: If you sum a list of lists, you get a list containing the elements of those list
》>2 sumn ([[1], [2, 3], (4]], [1] def leaves (tree):

$$
\left.\begin{array}{ll}
3 \\
3
\end{array}\right)
$$

return $[$ label (ltree) $]$
return sum (List of leaves for each branch,
elt)

branches (tree)

 Ib for b in branches (tree) 1Leaves tree
or b in branches(tree)] [branches (s) for s in leaves(tree)] [leaves(s) for s in leaves(tree)]

Creating Trees
A function that creates a tree from another tree is typically also recursive
def increment_1-1eaves (t):
"Return a tree like t but with leaf values incremented. "" $"$ " ${ }^{\text {is }}$ ileaf (t) :
return tree (1abel $(\mathrm{t})+1$)
Example: Printing Trees
def increment (t):
Return a tree 1 ike t but with all node values incremented. ""'
return tree(label $(t)+1,[$ increment (b) for b in branches $(t)])$

