
String Representations

String Representations

An object value should behave like the kind of data it is meant to represent

For instance, by producing a string representation of itself

Strings are important: they represent language and programs

In Python, all objects produce two string representations:

• The str is legible to humans

• The repr is legible to the Python interpreter

The str and repr strings are often the same, but not always

4

The repr String for an Object

The result of calling repr on a value is what Python prints in an interactive session

>>> 12e12
12000000000000.0
>>> print(repr(12e12))
12000000000000.0

Some objects do not have a simple Python-readable string

repr(object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (a string) that evaluates to an equal object

>>> repr(min)
'<built-in function min>'

5

The str String for an Object

Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)
'1/2'

(Demo)

The result of calling str on the value of an expression is what Python prints
using the print function:

6

>>> print(half)
1/2

Polymorphic Functions

Polymorphic Functions

Polymorphic function: A function that applies to many (poly) different forms (morph) of data

str and repr are both polymorphic; they apply to any object

repr invokes a zero-argument method __repr__ on its argument

str invokes a zero-argument method __str__ on its argument

>>> half.__repr__()
'Fraction(1, 2)'

>>> half.__str__()
'1/2'

8

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found

• Question: How would we implement this behavior?

9

(Demo)

def repr(x):
 return type(x).__repr__(x)

def repr(x):
 return x.__repr__(x)

def repr(x):
 return x.__repr__()

def repr(x):
 return type(x).__repr__()

def repr(x):
 return super(x).__repr__()

The behavior of str is also complicated:

• An instance attribute called __str__ is ignored

• If no __str__ attribute is found, uses repr string

• (By the way, str is a class, not a function)

• Question: How would we implement this behavior?

Interfaces

Message passing: Objects interact by looking up attributes on each other (passing messages)

The attribute look-up rules allow different data types to respond to the same message

A shared message (attribute name) that elicits similar behavior from different object
classes is a powerful method of abstraction

An interface is a set of shared messages, along with a specification of what they mean

Example:

Classes that implement __repr__ and __str__ methods that return Python-interpretable and
human-readable strings implement an interface for producing string representations

10

(Demo)

Special Method Names

Special Method Names in Python

12

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

__float__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Method invoked to convert an object to True or False

Method invoked to convert an object to a float (real number)

>>> zero, one, two = 0, 1, 2
>>> one + two
3
>>> bool(zero), bool(one)
(False, True)

>>> zero, one, two = 0, 1, 2
>>> one.__add__(two)
3
>>> zero.__bool__(), one.__bool__()
(False, True)

Same
behavior
using

methods

Special Methods

Adding instances of user-defined classes invokes either the __add__ or __radd__ method

>>> Ratio(1, 3) + Ratio(1, 6)
Ratio(1, 2)

13

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

http://getpython3.com/diveintopython3/special-method-names.html

>>> Ratio(1, 3).__add__(Ratio(1, 6))
Ratio(1, 2)

>>> Ratio(1, 6).__radd__(Ratio(1, 3))
Ratio(1, 2)

(Demo)

Generic Functions

A polymorphic function might take two or more arguments of different types

Type Dispatching: Inspect the type of an argument in order to select behavior

Type Coercion: Convert one value to match the type of another

14

(Demo)

>>> Ratio(1, 3) + 1
Ratio(4, 3)

>>> 1 + Ratio(1, 3)
Ratio(4, 3)

>>> from math import pi
>>> Ratio(1, 3) + pi
3.4749259869231266

Announcements

Modular Design

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events
•State tracking to
determine the winner

•Event descriptions
•State tracking to
generate commentary

•Decision rules
•Strategy parameters
(e.g., margins & 
 number of dice)

•Order of actions
•Food tracking
•Game ending conditions

•Characteristics
of different
ants & bees

•Entrances & exits
•Locations of insects

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Ants Game
Simulator Actions Tunnel

StructureAnts

Example: Restaurant Search

Restaurant Search Data

Given the following data, look up a restaurant by name and show related restaurants.

6

(Demo)

{"business_id": "gclB3ED6uk6viWlolSb_uA", "name": "Cafe 3", "stars": 2.0, "price": 1, ...}

{"business_id": "WXKx2I2SEzBpeUGtDMCS8A", "name": "La Cascada Taqueria", "stars": 3.0, "price": 2}

...

{"business_id": "gclB3ED6uk6viWlolSb_uA", "user_id": "xVocUszkZtAqCxgWak3xVQ", "stars": 1, "text": 
 "Cafe 3 (or Cafe Tre, as I like to say) used to be the bomb diggity when I first lived in the dorms  
 but sadly, quality has dramatically decreased over the years....", "date": "2012-01-19", ...}

{"business_id": "WXKx2I2SEzBpeUGtDMCS8A", "user_id": "84dCHkhWG8IDtk30VvaY5A", "stars": 2, "text": 
 "-Excuse me for being a snob but if I wanted a room temperature burrito I would take one home,  
 stick it in the fridge for a day, throw it in the microwave for 45 seconds, then eat it. NOT go to  
 a resturant and pay like seven dollars for one...", "date": "2009-04-30", ...}

...

Example: Similar Restaurants

Discussion Question: Most Similar Restaurants

Implement similar, a Restaurant method that takes a positive integer k and a function
similarity that takes two restaurants as arguments and returns a number. Higher similarity
values indicate more similar restaurants. The similar method returns a list containing the
k most similar restaurants according to the similarity function, but not containing self.

def similar(self, k, similarity):
"Return the K most similar restaurants to SELF, using SIMILARITY for comparison."

 others = list(Restaurant.all)

 others.______________(______________)

 return sorted(others, key=__)__________________

8

remove self

lambda r: -similarity(self, r) [:k]

sorted(iterable, /, *, key=None, reverse=False)
 Return a new list containing all items from the iterable in ascending order.
 A custom key function can be supplied to customize the sort order, and the
 reverse flag can be set to request the result in descending order.

Example: Reading Files

(Demo)

Set Intersection

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

def fast_overlap(s, t):
 """Return the overlap between sorted S and sorted T.

 >>> fast_overlap([3, 4, 6, 7, 9, 10], [1, 3, 5, 7, 8])
 2
 """
 i, j, count = 0, 0, 0

 while __:
 if s[i] == t[j]:
 count, i, j = ____________________________
 elif s[i] < t[j]:
 __
 else:
 __
 return count

i < len(s) and j < len(t)

count + 1, i + 1, j + 1

i = i + 1

j = j + 1

(Demo)

Sets

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets have arbitrary order

>>> s = {'one', 'two', 'three', 'four', 'four'}
>>> s
{'three', 'one', 'four', 'two'}
>>> 'three' in s
True
>>> len(s)
4
>>> s.union({'one', 'five'})
{'three', 'five', 'one', 'four', 'two'}
>>> s.intersection({'six', 'five', 'four', 'three'})
{'three', 'four'}
>>> s
{'three', 'one', 'four', 'two'}

13

	19-Representation_1pp
	22-Decomposition_1pp

