Scheme

Special Forms

Lambda Expressions

Scheme is a Dialect of Lisp

what are people saying about Lisp?

«"If you don't know Li:

sp, you don't know what it means for a programming language to be
powerful and elegant."

- Richard Stallman, created Emacs & the first free variant of UNIX
“The only computer language that is beautiful."

-Neal Stephenson, DeNero's favorite sci-fi author

"The greatest single programming language ever designed."

-Alan Kay, co-inventor of Smalltalk and 00P (from the user interface video)

Special Forms

A combination that is not a call expression is a special form

- if expression:

«and and or:

« Binding symbols:

* New procedures:

(if <predicate> <consequent> <alternatives)
(and <el> ..

Evaluation:
(1) Evaluate the

. <en>), (or <el> .. predicate expression

(define <symbol> <expression>)

. <en>)

(2) Evaluate either
the consequent or

(define (<symbol> <formal parameters>) <body>)

alternative

> (% pi

The symbol “pi” is bound to 3.14 in the
6.28

> (define pi 3.14)
2) global frame

symbol “abs”

> (define (abs X) 5 A procedure is created and bound to the
(if (< x 0)
-

x)
> (abs -3)
3

(Demo)

Lambda Expressions
Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>)

Two equivalent expressions:
(define (plusa x) (+ x 4))

(define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

(i(lambda (x y z) (+ x y (square z)))i1l 2 3)

» 12

Evaluates to the

x+y+z2 procedure

Scheme Expressions

Scheme programs consist of expressions, which can be:
ePrimitive expressions: 2 3.3 true + quotient

* Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values
Call expressions include an operator and @ or more operands in parentheses

> (quotient 10 2) “quotient” names Scheme’s
5 built-in integer division
> (quotient (+ 8 7) 5) procedure (i.e., function)
>

Combinations can span
multiple lines

- i; 3)5)” (spacing doesn’t matter)
6

(Demo)

Scheme Interpreters

(Demo)

Lists

Scheme Lists

In the

- cons:

. car:
*cdr:
*nil:

Inportant! Scheme lists are written in parentheses with elements separated by spaces

late 19505, computer scientists used confusing names

Two-argument procedure that creates a linked list

Procedure that returns the first element of a list
Procedure that returns the rest of a list

The empty list

> (cons 1 (cons 2 nil))
(12

> (define x (cons 1 (cons 2 nil))

> x
(12)
> (car x)

> (cdr x)
(2)

> (cons 1 (cons 2 (cons 3 (cons 4 niV))) [F—[2[F—[[F—[]1]
4)

(123

(Demo)

Pairs Review

Programming Languages

(cons 2 nil)

Symbolic Programming

Pairs and Lists

In the late 1950s, computer scientists used confusing names
« cons: Two-argument procedure that creates a pair

«car: Procedure that returns the first element of a pair (cons 2 nil)
«cdr: Procedure that returns the second element of a pair
*nil: The empty list

+ A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme Llist

(cons 1 2)

« Important! Scheme lists are written in parentheses separated by spaces
« A dotted list has some value for the second element of the last pair that is not a list

> (cons 1 (cons 2 nil)) |
(12

> (define x (cons 1 2)) 1]2

> x
1.2

> (car x) Not a well-formed list!

1

> (cdr x)

2

> (cons 1 (cons 2 (cons 3 (cons 4 niV))) [F—[2[F—[BT7F—[2]1]
(1234)

(Demo)

Programming Languages
A computer typically executes programs written in many different programming languages

Machine languages: statements are interpreted by the hardware itself

A fixed set of instructions invoke operations implemented by the circuitry of the
central processing unit (CPU)

«Operations refer to specific hardware memory addresses; no abstraction mechanisms

High-level languages: statements & expressions are interpreted by another program or
compiled (translated) into another language

«Provide means of abstraction such as naming, function definition, and objects
e Abstract away system details to be independent of hardware and operating system

Python 3 Python 3 Byte Code
def square(x): from dis import dis LOAD_FAST 0 (x)
return x * x dis(square) LOAD_FAST 0 (x)

BINARY_MULTIPLY
RETURN_VALUE

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)
> (define b 2)
> (list a b)
(12)

No sign of “a” and “b” in the
resulting value

Quotation is used to refer to symbols directly in Lisp.

ist 'a ' Short for (quote a), (quote b):
Ta(;ﬂ 2 Special form to indicate that the
> (list 'a b) expression itself is the value.

(a 2)

Quotation can also be applied to combinations to form lists.

> '(abc)
(abc)
> (car '(a b c))

a
TbLETr (abc)) (Demo)

Sierpinski's Triangle

(Demo)

Metalinguistic Abstraction

A powerful form of abstraction is to define a new language that is tailored to a particular
type of application or problem domain

Type of application: Erlang was designed for concurrent programs. It has built-in elements
for expressing concurrent communication. It is used, for example, to implement chat
servers with many simultaneous connections

Problem domain: The MediaWiki mark-up language was designed for generating static web
pages. It has built-in elements for text formatting and cross-page linking. It is used, for
example, to create Wikipedia pages

A programming language has:
«Syntax: The legal statements and expressions in the language
«Semantics: The execution/evaluation rule for those statements and expressions

To create a new programming language, you either need a:
* Specification: A document describe the precise syntax and semantics of the language

« Canonical Inplementation: An interpreter or compiler for the language

