
Scheme

Scheme is a Dialect of Lisp

What are people saying about Lisp?

• "If you don't know Lisp, you don't know what it means for a programming language to be
powerful and elegant."  
 
- Richard Stallman, created Emacs & the first free variant of UNIX

• "The only computer language that is beautiful." 
 
 -Neal Stephenson, DeNero's favorite sci-fi author

• "The greatest single programming language ever designed." 
 
 -Alan Kay, co-inventor of Smalltalk and OOP (from the user interface video)

4

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

(Demo)

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines  

(spacing doesn’t matter)

Special Forms

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

The symbol “pi” is bound to 3.14 in the
global frame

A procedure is created and bound to the
symbol “abs”

7

Evaluation:
(1) Evaluate the

predicate expression
(2) Evaluate either
the consequent or

alternative

(Demo)

Scheme Interpreters

(Demo)

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

 ((lambda (x y z) (+ x y (square z))) 1 2 3)

Evaluates to the  
x+y+z2 procedure

10

12

Lists

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list

• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)
 > (define x (cons 1 (cons 2 nil))
 > x
 (1 2)
 > (car x)
 1
 > (cdr x)
 (2)
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

(Demo)

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2 3 4

2

Symbolic Programming

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > '(a b c)
 (a b c)
 > (car '(a b c))
 a
 > (cdr '(a b c))
 (b c)

Short for (quote a), (quote b):
Special form to indicate that the
expression itself is the value.

14

(Demo)

Pairs Review

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)
 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

Not a well-formed list!

4(Demo)

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2

1 2 3 4

2

Sierpinski's Triangle

(Demo)

Programming Languages

Programming Languages

A computer typically executes programs written in many different programming languages

4

Machine languages: statements are interpreted by the hardware itself

•A fixed set of instructions invoke operations implemented by the circuitry of the
central processing unit (CPU)

•Operations refer to specific hardware memory addresses; no abstraction mechanisms

High-level languages: statements & expressions are interpreted by another program or
compiled (translated) into another language

•Provide means of abstraction such as naming, function definition, and objects
•Abstract away system details to be independent of hardware and operating system

from dis import dis
dis(square)

def square(x):
 return x * x

Python 3

LOAD_FAST 0 (x)
LOAD_FAST 0 (x)
BINARY_MULTIPLY
RETURN_VALUE

Python 3 Byte Code

Metalinguistic Abstraction

A powerful form of abstraction is to define a new language that is tailored to a particular
type of application or problem domain

5

Type of application: Erlang was designed for concurrent programs. It has built-in elements
for expressing concurrent communication. It is used, for example, to implement chat
servers with many simultaneous connections

Problem domain: The MediaWiki mark-up language was designed for generating static web
pages. It has built-in elements for text formatting and cross-page linking. It is used, for
example, to create Wikipedia pages

A programming language has:

•Syntax: The legal statements and expressions in the language
•Semantics: The execution/evaluation rule for those statements and expressions

To create a new programming language, you either need a:

•Specification: A document describe the precise syntax and semantics of the language
•Canonical Implementation: An interpreter or compiler for the language

