
Parsing

Reading Scheme Lists

A Scheme list is written as elements in parentheses:

(<element_0> <element_1> ... <element_n>)

Each <element> can be a combination or primitive

(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))

The task of parsing a language involves coercing a string representation of an expression
to the expression itself

(Demo)
http://composingprograms.com/examples/scalc/scheme_reader.py.html

7

A Scheme list

Parsing

A Parser takes text and returns an expression

8

 '(+ 1'

 ' (- 23)'

 ' (* 4 5.6))'

Text ExpressionLexical
analysis Tokens Syntactic

analysis

'(', '+', 1
'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))

printed as

• Iterative process

• Checks for malformed tokens

• Determines types of tokens

• Processes one line at a time

•Tree-recursive process
•Balances parentheses
•Returns tree structure
•Processes multiple lines

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be
nested

Each call to scheme_read consumes the input tokens for exactly one expression

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them

9

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

(Demo)

Scheme-Syntax Calculator

(Demo)

The Pair Class

The Pair class represents Scheme pairs and lists. A list is a pair whose second element
is either a list or nil.

11

>>> s = Pair(1, Pair(2, Pair(3, nil)))
>>> print(s)
(1 2 3)
>>> len(s)
3
>>> print(Pair(1, 2))
(1 . 2)
>>> print(Pair(1, Pair(2, 3)))
(1 2 . 3)
>>> len(Pair(1, Pair(2, 3)))
Traceback (most recent call last):
...
TypeError: length attempted on improper list

class Pair:
 """A Pair has two instance attributes:
 first and second.

 For a Pair to be a well-formed list,
 second is either a well-formed list or nil.
 Some methods only apply to well-formed lists.
 """
 def __init__(self, first, second):
 self.first = first
 self.second = second

Scheme expressions are represented as Scheme lists! Source code is data

(Demo)

Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2 -4 5.6

A call expression is a combination that begins with an operator (+, -, *, /) followed by 0
or more expressions: (+ 1 2 3) (/ 3 (+ 4 5))

12

Expressions are represented as Scheme lists (Pair instances) that encode tree structures.

(* 3  
 (+ 4 5) 
 (* 6 7 8))

Expression

secondfirst
*

secondfirst
3

secondfirst secondfirst
nil

secondfirst
+

secondfirst
4

secondfirst
5 nil

secondfirst
*

secondfirst
6

secondfirst
7

secondfirst
8 nil

Representation as PairsExpression Tree

* 3

+ 4 5 * 6 87

Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

+: Sum of the arguments

*: Product of the arguments

-: If one argument, negate it. If more than one, subtract the rest from the first.

/: If one argument, invert it. If more than one, divide the rest from the first.

13

(+ 5  
 (* 2 3) 
 (* 2 5 5))

Expression Expression Tree

+ 5

* 2 3 * 2 55

506

61

Evaluation

The Eval Function

The eval function computes the value of an expression, which is always a number

It is a generic function that dispatches on the type of the expression (primitive or call)

15

def calc_eval(exp):
 if type(exp) in (int, float):
 return exp
 elif isinstance(exp, Pair):
 arguments = exp.second.map(calc_eval)
 return calc_apply(exp.first, arguments)
 else:
 raise TypeError

A number evaluates...

A call expression evaluates...

 to its argument values

 to itself

'+', '-',
'*', '/'

A Scheme list
of numbers

Recursive call
returns a number
for each operand

 combined by an operator

Implementation Language Semantics

Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values

In calculator, all operations are named by built-in operators: +, -, *, /

16

def calc_apply(operator, args):
 if operator == '+':
 return reduce(add, args, 0)
 elif operator == '-':
 ...
 elif operator == '*':
 ...
 elif operator == '/':
 ...
 else:
 raise TypeError

 Sum of the arguments
+:

Implementation Language Semantics

 ...
-:

...

(Demo)

Interactive Interpreters

Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter

1. Print a prompt

2. Read text input from the user

3. Parse the text input into an expression

4. Evaluate the expression

5. If any errors occur, report those errors, otherwise

6. Print the value of the expression and repeat

18

(Demo)

Raising Exceptions

Exceptions are raised within lexical analysis, syntactic analysis, eval, and apply

Example exceptions

• Lexical analysis: The token 2.3.4 raises ValueError("invalid numeral")

• Syntactic analysis: An extra) raises SyntaxError("unexpected token")

• Eval: An empty combination raises TypeError("() is not a number or call expression")

• Apply: No arguments to - raises TypeError("- requires at least 1 argument")

19

(Demo)

Handling Exceptions

An interactive interpreter prints information about each error

A well-designed interactive interpreter should not halt completely on an error,
so that the user has an opportunity to try again in the current environment

20

(Demo)

Interpreting Scheme

The Structure of an Interpreter

4

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

Requires an
environment
for symbol
lookup

Creates a new
environment each time

a user-defined
procedure is applied

Special Forms

Scheme Evaluation

The scheme_eval function choose behavior based on expression form:

• Symbols are looked up in the current environment

• Self-evaluating expressions are returned as values

• All other legal expressions are represented as Scheme lists, called combinations

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special forms
are identified
by the first
list element

Any combination
that is not a
known special
form is a call
expression

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

6

Logical Forms

Logical Special Forms

Logical forms may only evaluate some sub-expressions

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expression: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

The value of an if expression is the value of a sub-expression:

• Evaluate the predicate

• Choose a sub-expression: <consequent> or <alternative>

• Evaluate that sub-expression to get the value of the whole expression

do_if_form

(Demo)

8

Quotation

Quotation

The quote special form evaluates to the quoted expression, which is not evaluated

(quote <expression>)

The <expression> itself is the value of the whole quote expression

'<expression> is shorthand for (quote <expression>)

The scheme_read parser converts shorthand ' to a combination that starts with quote

10

(Demo)

(quote (+ 1 2)) (+ 1 2)evaluates to the  
three-element Scheme list

(quote (1 2)) '(1 2)is equivalent to

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to user-defined procedures

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure:
 def __init__(self, formals, body, env):

 self.formals = formals
 self.body = body

 self.env = env

12

A scheme list of symbols
A scheme list of expressions
A Frame instance

Frames and Environments

A frame represents an environment by having a parent frame

Frames are Python instances with methods lookup and define

In Project 4, Frames do not hold return values

g: Global frame

y
z

3
5

f1: [parent=g]

x
z

2
4

13

(Demo)

Define Expressions

Define Expressions

Define binds a symbol to a value in the first frame of the current environment.

(define <name> <expression>)

(define (<name> <formal parameters>) <body>)

(define <name> (lambda (<formal parameters>) <body>))

Procedure definition is shorthand of define with a lambda expression

1. Evaluate the <expression>

2. Bind <name> to its value in the current frame

(define x (+ 1 2))

15

Applying User-Defined Procedures

To apply a user-defined procedure, create a new frame in which formal parameters are bound
to argument values, whose parent is the env attribute of the procedure

Evaluate the body of the procedure in the environment that starts with this new frame

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

[parent=g] s

g: Global frame

demo LambdaProcedure instance [parent=g]

16

Eval/Apply in Lisp 1.5

17

