Dynamic Scope

Lexical scope: The parent of a frame is the environnent in unich a procedure was defined
Dynamic scope: The parent of a frane is the environent in which a procedure was called
Dynamic Scope

Recursion and Iteration in Python
In Python, recursive calls always create new active frames
factorial(n, k) computes: n! *k

	Tine	Space
def factorial($n, k)$: 1f $\mathrm{n}==0:$ else eturn factorial($\mathrm{n}-1, \mathrm{k} * \mathrm{n}$)	$\theta(n)$	$\theta(n)$
def factorial($n, k)$: while $n>0:$ $n, k=n-1, k * n$ return k *n	$\theta(n)$	$\theta(1)$

Tail Calls
A procedure call that has not yet returned is active. Sone procedure calls are tail calls.
A schene interpeter stonulu support an uniounded number of active tail calls using only a
constant anount
A tail call is a call expression in a tail context:

- The last body sub-expression in a lambda expression
- Sub-expressions $2 \& 3$ in a tail context if expression
- The last sub-expression in a tail context and, or, begin, or let

```
define (factorial \(n k\)
\(\stackrel{(i f(=n \text { o) } k}{\text { (factorial }(-n)}\) \(\left(\begin{array}{c}\left(\text { factorial }\left(\begin{array}{ll}-n & 1 \\ (* * & k\end{array}\right)\right.\end{array}\right)\)
```

Tai Rearsion
From the Revised' Report on the Algorithnic Language Scheme:
"Inplementations of Schene are reauired to be properly tail-recursive, This allows the "Inplementations of schene are reauired to be properly tail-recursive. This ate
execution of it iterative conputation in constant space, even if the iterative
comoutation is described by a syntactictically receursive proceedure."

Example: Length of a List
(define (length s)
(if (nuluz s) • Not a tail context
$(+1($ length (cdr s) $)$) $)$
A call expression is not a tail call if more computation is still required
in the calling procedure
inear recursive procedures can often be re-written to use tail calls
(def ine (length-tail s)

(length-iter ($(\mathrm{dr} 5)(+1 \mathrm{n}) \mathrm{l})$)
(length-iter 50)

Eval with Tail Call Optimization
The return walue of the tail call is the return waike of the cirent procedure call

th ther

Tail Recursion Examples

Space depends on what procedure requires
(reduce * '(3 4 5) 2)
redice (lambla (xy) (cons y x) '(3 45) '(2)
\longrightarrow

Which Procedures are Tail Recursive?
Which of the following procedures run in constant space? $\Theta(1)$

Return the ntt Fibonacii number.

current
citib-it

; Return whether s contains v .
Return unether s contains v.
def ine (contains $s v$) (if (nult s) $\underbrace{\text { fife (}}_{\text {false }}$ (car s))
: Return whether s has any repeated elenents.
(define (has-repeat s)

false (contains? (cdr s) (car s): (has-repeat (dar s)i!) \qquad

Example: Map with Only a Constant Number of Frames

Iterpreters are General Computing Machine

A_{n} interpreter can be paraneterized to sinulate any machire

Our Schene interpreter is a universal machin

A bridge betwen the data objects that are manipulated by our programing language and
the programing language itself
Internally, it is just a set of evaluation rules

