
Programs as Data

A Scheme Expression is a Scheme List

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

4

scm> (list 'quotient 10 2)
(quotient 10 2)

scm> (eval (list 'quotient 10 2))
5

(Demo)

The built-in Scheme list data structure (which is a linked list) can represent combinations

In such a language, it is straightforward to write a program that writes a program

Macros

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

6

(define-macro (twice expr)
 (list 'begin expr expr))

> (twice (print 2))
2
2

Evaluation procedure of a macro call expression:

• Evaluate the operator sub-expression, which evaluates to a macro

• Call the macro procedure on the operand expressions without evaluating them first

• Evaluate the expression returned from the macro procedure

(Demo)

(begin (print 2) (print 2)) For Macro

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

8

(define (map fn vals)
 (if (null? vals)
 ()
 (cons (fn (car vals))
 (map fn (cdr vals)))))

scm> (map (lambda (x) (* x x)) '(2 3 4 5))
(4 9 16 25)

scm> (for x '(2 3 4 5) (* x x))
(4 9 16 25)

(define-macro (for sym vals expr)

 (list 'map ___)(list 'lambda (list sym) expr) vals)

(Demo)

Quasi-Quotation

(Demo)

