
Streams Announcements Efficient Sequence Processing

sum

source:

total:

range iterator

next:

end: 6

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def sum_primes(a, b):
 total = 0
 x = a
 while x < b:
 if is_prime(x):
 total = total + x
 x = x + 1
 return total

def sum_primes(a, b):
 return sum(filter(is_prime, range(a, b)))

(Demo)

1

0

filter

source:

f: is_prime

2345

2510

sum_primes(1, 6)

Space: Constant Also Constant

Streams

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 nil)) -> 1

(cdr (cons 1 nil)) -> ()

(cons 1 (cons 2 nil))

(Demo)

(car (cons-stream 1 nil)) -> 1

(cdr-stream (cons-stream 1 nil)) -> ()

(cons-stream 1 (cons-stream 2 nil))

(cons 1 (cons (/ 1 0) nil)) -> ERROR

(cons-stream 1 (cons-stream (/ 1 0) nil)) -> (1 . #[promise (not forced)])

(car (cons-stream 1 (cons-stream (/ 1 0) nil))) -> 1

(cdr-stream (cons-stream 1 (cons-stream (/ 1 0) nil))) -> ERROR

Errors only occur when expressions are evaluated:

Stream Ranges are Implicit

7

A stream can give on-demand access to each element in order

(define (range-stream a b)
 (if (>= a b)
 nil
 (cons-stream a (range-stream (+ a 1) b))))

(define lots (range-stream 1 10000000000000000000))

scm> (car lots)
1
scm> (car (cdr-stream lots))
2
scm> (car (cdr-stream (cdr-stream lots)))
3

Infinite Streams

Integer Stream

An integer stream is a stream of consecutive integers

The rest of the stream is not yet computed when the stream is created

(define (int-stream start)
 (cons-stream start (int-stream (+ start 1))))

9

(Demo)

Stream Processing

(Demo)

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define ones (cons-stream 1 ones))

11

1 1 1 1 1 1 ...

Combine two streams by separating each into car and cdr

(define (add-streams s t)
 (cons-stream (+ (car s) (car t))
 (add-streams (cdr-stream s)
 (cdr-stream t))))

(define ints (cons-stream 1 (add-streams ones ints))) 2 3 4 5 6 7 ...1

+ +

 2

Higher-Order Stream Functions

(define (map f s)
 (if (null? s)
 nil
 (cons (f (car s))
 (map f
 (cdr s)))))

(define (filter f s)
 (if (null? s)
 nil
 (if (f (car s))
 (cons (car s)
 (filter f (cdr s)))
 (filter f (cdr s)))))

(define (reduce f s start)
 (if (null? s)
 start
 (reduce f
 (cdr s)
 (f start (car s)))))

(define (map-stream f s)
 (if (null? s)
 nil
 (cons-stream (f (car s))
 (map-stream f
 (cdr-stream s)))))

(define (filter-stream f s)
 (if (null? s)
 nil
 (if (f (car s))
 (cons-stream (car s)
 (filter-stream f (cdr-stream s)))
 (filter-stream f (cdr-stream s)))))

(define (reduce-stream f s start)
 (if (null? s)
 start
 (reduce-stream f
 (cdr-stream s)
 (f start (car s)))))

(define (map f s)
 (if (null? s)
 nil
 (cons (f (car s))
 (map f
 (cdr s)))))

(define (filter f s)
 (if (null? s)
 nil
 (if (f (car s))
 (cons (car s)
 (filter f (cdr s)))
 (filter f (cdr s)))))

(define (reduce f s start)
 (if (null? s)
 start
 (reduce f
 (cdr s)
 (f start (car s)))))

Higher-Order Functions on Streams

14

Implementations are identical,
but change cons to cons-stream
and change cdr to cdr-stream

:%s/\v(map|filter|reduce|cdr|cons)/\1-stream/g

A Stream of Primes

The stream of integers not divisible by any k <= n is:

The stream of integers not divisible by any k < n

Filtered to remove any element divisible by n

This recurrence is called the Sieve of Eratosthenes

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

15

(Demo)

For any prime k, any larger prime must not be divisible by k.

