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Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions
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Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def sum_primes(a, b): 
    total = 0 
    x = a 
    while x < b: 
        if is_prime(x): 
            total = total + x 
        x = x + 1 
    return total

def sum_primes(a, b): 
    return sum(filter(is_prime, range(a, b)))

(Demo)
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Space: Constant Also Constant

Streams

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:
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(car (cons 1 nil)) -> 1 

(cdr (cons 1 nil)) -> () 

(cons 1 (cons 2 nil))

(Demo)

(car        (cons-stream 1 nil)) -> 1 

(cdr-stream (cons-stream 1 nil)) -> () 

(cons-stream 1 (cons-stream 2 nil))

(cons        1 (cons        (/ 1 0) nil))              -> ERROR 

(cons-stream 1 (cons-stream (/ 1 0) nil))              -> (1 . #[promise (not forced)]) 

(car        (cons-stream 1 (cons-stream (/ 1 0) nil))) -> 1 

(cdr-stream (cons-stream 1 (cons-stream (/ 1 0) nil))) -> ERROR

Errors only occur when expressions are evaluated:

Stream Ranges are Implicit
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A stream can give on-demand access to each element in order

(define (range-stream a b) 
  (if (>= a b)  
      nil  
      (cons-stream a (range-stream (+ a 1) b)))) 

(define lots (range-stream 1 10000000000000000000)) 

scm> (car lots) 
1 
scm> (car (cdr-stream lots)) 
2 
scm> (car (cdr-stream (cdr-stream lots))) 
3

Infinite Streams

Integer Stream

An integer stream is a stream of consecutive integers 

The rest of the stream is not yet computed when the stream is created

(define (int-stream start) 
  (cons-stream start (int-stream (+ start 1))))
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(Demo)



Stream Processing

(Demo)

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define ones (cons-stream 1 ones))
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Combine two streams by separating each into car and cdr

(define (add-streams s t) 
  (cons-stream (+ (car s) (car t)) 
               (add-streams (cdr-stream s) 
                            (cdr-stream t))))

(define ints (cons-stream 1 (add-streams ones ints)))    2  3  4  5  6  7  ...1

+ +

   2

Higher-Order Stream Functions

(define (map f s) 
  (if (null? s)  
      nil 
      (cons (f (car s)) 
            (map f  
                 (cdr s))))) 
   
(define (filter f s) 
  (if (null? s) 
      nil 
      (if (f (car s)) 
          (cons (car s)  
                (filter f (cdr s))) 
          (filter f (cdr s))))) 

(define (reduce f s start) 
  (if (null? s)  
      start 
      (reduce f 
              (cdr s) 
              (f start (car s))))) 

(define (map-stream f s) 
  (if (null? s)  
      nil 
      (cons-stream (f (car s)) 
            (map-stream f  
                 (cdr-stream s))))) 
   
(define (filter-stream f s) 
  (if (null? s) 
      nil 
      (if (f (car s)) 
          (cons-stream (car s)  
                (filter-stream f (cdr-stream s))) 
          (filter-stream f (cdr-stream s))))) 

(define (reduce-stream f s start) 
  (if (null? s)  
      start 
      (reduce-stream f 
              (cdr-stream s) 
              (f start (car s))))) 

(define (map        f s) 
  (if (null? s)  
      nil 
      (cons        (f (car s)) 
            (map        f  
                 (cdr        s))))) 
   
(define (filter        f s) 
  (if (null? s) 
      nil 
      (if (f (car s)) 
          (cons        (car s)  
                (filter        f (cdr        s))) 
          (filter        f (cdr        s))))) 

(define (reduce        f s start) 
  (if (null? s)  
      start 
      (reduce        f 
              (cdr        s) 
              (f start (car s))))) 

Higher-Order Functions on Streams
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Implementations are identical, 
but change cons to cons-stream  
and change cdr to cdr-stream

:%s/\v(map|filter|reduce|cdr|cons)/\1-stream/g

A Stream of Primes

The stream of integers not divisible by any k <= n is: 

The stream of integers not divisible by any k < n 

Filtered to remove any element divisible by n 

This recurrence is called the Sieve of Eratosthenes

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
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(Demo)

For any prime k, any larger prime must not be divisible by k.


