Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions
Example: Sum all prines in an interval from a (inclusive to bection
def sumprimes $(a, b):$
totatal $=0$

$x=\begin{aligned} & \text { total } \\ & \text { return total }\end{aligned}$
体

sum_primes (1, 6)

(Deno)

Constant
Space

Also Constant

Streams

Integer Stream

An integer stream is a stream of consecutive integer
The rest of the stream is not yet computed when the stream is created
(define (int-stream start)
(cons-stream start (int-stream (+ start 1))))

${ }_{(\text {nil }}^{\text {nil }}$ (cons-stream a $($ range-stream ($+\mathrm{a} 1)$ b))))

${ }_{1}^{\text {scm> }}$ (car lots)
Scm> (car (cdr-stream (cdr-stream lots)))

Recursively Defined Streams
The rest of a constant stream is the costant stren
(define ones (cons-stream 1 ones))
Combine two streans by separating each into car and cdr

(define ints (cons-stream 1 (add-streams ones ints)))

Higher-Order Functions on Streams

(Coses. fiteot (t) ter s)
(catspom s)"M)

tart
reduce
tol

A Stream of Primes

For any prine k, any larger prine must not be divisisible by k.
The stream of integers not divisible by any $k<=n$ is
The stream of integers not divisisibe by any $\mathrm{k}<$
Filtered to renove any elenent divisible by n
This recurrence is called the Sieve of Eratosthenes
$2,3,4,5,6,7,8, y, 70,11,12,13$
(Deno)

