
CS 61A Higher Order Functions
Summer 2020 Discussion 2: June 30, 2020

1 Higher Order Functions
A higher order function (HOF) is a function that manipulates other func-

tions by taking in functions as arguments, returning a function, or both. For

example, the function compose1 below takes in two functions as arguments

and returns a function that is the composition of the two arguments.

>>> def compose1(f, g):

def h(x):

return f(g(x))

return h

HOFs are powerful abstraction tools that allow us to express certain general

patterns as named concepts in our programs.

A Note on Lambda Expressions
A lambda expression evaluates to a function, called a lambda function. For

example, lambda y: x + y is a lambda expression, and can be read as a

function that takes in one parameter y and returns x + y.

A lambda expression by itself evaluates to a function but does not bind it to

a name. Also note that the return expression of this function is not evaluated

until the lambda is called. This is similar to how defining a new function

using a def statement does not execute the function’s body until it is later

called.

>>> what = lambda x : x + 5

>>> what

<function <lambda> at 0xf3f490>

Unlike def statements, lambda expressions can be used as an operator or

an operand to a call expression. This is because they are simply one-line

expressions that evaluate to functions.

>>> (lambda y: y + 5)(4)

9

>>> (lambda f, x: f(x))(lambda y: y + 1, 10)

11

2 Higher Order Functions

Currying
One important application of HOFs is converting a function that takes mul-

tiple arguments into a chain of functions that each take a single argument.

This is known as currying. For example, the function below converts the

pow function into its curried form:

>>> def curried_pow(x):

def h(y):

return pow(x, y)

return h

>>> curried_pow(2)(3)

8

HOFs in Environment Diagrams
Recall that an environment diagram keeps track of all the variables that

have been defined and the values they are bound to. However, values are

not necessarily only integers and strings. Environment diagrams can model

more complex programs that utilize higher order functions.

x = 4

def add_num(x):

return lambda y: x + y

add_two = add_num(2)

add_two(3)

Lambdas are represented similarly to functions in environment diagrams, but

since they lack instrinsic names, the lambda symbol (λ) is used instead.

The parent of any function (including lambdas) is always the frame in which

the function is defined. It is useful to include the parent in environment

diagrams in order to find variables that are not defined in the current frame.

In the previous example, when we call add two (which is really the lambda

function), we need to know what x is in order to compute x + y. Since x is

not in the frame f2, we look at the frame’s parent, which is f1. There, we

find x is bound to 2.

As illustrated above, higher order functions that return a function have their

return value represented with a pointer to the function object.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Higher Order Functions 3

Questions
1.1 Draw the environment diagram that results from executing the code below.

1 def curry2(h):

2 def f(x):

3 def g(y):

4 return h(x, y)

5 return g

6 return f

7 make_adder = curry2(lambda x, y: x + y)

8 add_three = make_adder(3)

9 add_four = make_adder(4)

10 five = add_three(2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Higher Order Functions

1.2 Write curry2 as a lambda function.

1.3 Draw the environment diagram that results from executing the code below.

1 n = 7

2

3 def f(x):

4 n = 8

5 return x + 1

6

7 def g(x):

8 n = 9

9 def h():

10 return x + 1

11 return h

12

13 def f(f, x):

14 return f(x + n)

15

16 f = f(g, n)

17 g = (lambda y: y())(f)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Higher Order Functions 5

1.4 The following question is more challenging than the previous ones. Nonethe-

less, it’s a fun problem to try.

Draw the environment diagram that results from executing the code below.

Note that using the + operator with two strings results in the second string

being appended to the first. For example "C" + "S" concatenates the two

strings into one string "CS"

1 y = "y"

2 h = y

3 def y(y):

4 h = "h"

5 if y == h:

6 return y + "i"

7 y = lambda y: y(h)

8 return lambda h: y(h)

9 y = y(y)(y)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Higher Order Functions

Writing Higher Order Functions

1.5 Write a function that takes in a function cond and a number n and prints

numbers from 1 to n where calling cond on that number returns True.

def keep_ints(cond, n):

"""Print out all integers 1..i..n where cond(i) is true

>>> def is_even(x):

... # Even numbers have remainder 0 when divided by 2.

... return x % 2 == 0

>>> keep_ints(is_even, 5)

2

4

"""

1.6 Write a function similar to keep_ints like before, but now it takes in a

number n and returns a function that has one parameter cond. The returned

function prints out numbers from 1 to n where calling cond on that number

returns True.

def make_keeper(n):

"""Returns a function which takes one parameter cond and prints out

all integers 1..i..n where calling cond(i) returns True.

>>> def is_even(x):

... # Even numbers have remainder 0 when divided by 2.

... return x % 2 == 0

>>> make_keeper(5)(is_even)

2

4

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Higher Order Functions 7

Self Reference
def print_all(x):

print(x)

return print_all

def print_sums(n):

print(n)

def next_sum(k):

return print_sums(n+k)

return next_sum

Self-reference refers to a particular design of HOF, where a function even-

tually returns itself. In particular, a self-referencing function will not return

a function call, but rather the function object itself. As an example, take a

look at the print all function to the right.

Self-referencing functions will oftentimes employ helper functions that refer-

ence the outer function, such as the example to the right, print sums.

Note that a call to print sums returns next sum. A call to next sum will

return the result of calling print sums which will, in turn, return another

function next sum. This type of pattern is common in self-referencing func-

tions.

Questions
1.7 Write a function print delayed delays printing its argument until the next

function call. print delayed takes in an argument x and returns a new func-

tion delay print. When delay print is called, it prints out x and returns

another delay print.

def print_delayed(x):

"""Return a new function. This new function, when called,

will print out x and return another function with the same

behavior.

>>> f = print_delayed(1)

>>> f = f(2)

1

>>> f = f(3)

2

>>> f = f(4)(5)

3

4

>>> f("hi")

5

<function print_delayed> # a function is returned

"""

def delay_print(y):

return ____________________

return delay_print

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Higher Order Functions

1.8 Write a function print n that can take in an integer n and returns a re-

peatable print function that can print the next n parameters. After the nth

parameter, it just prints ”done”.

def print_n(n):

"""

>>> f = print_n(2)

>>> f = f("hi")

hi

>>> f = f("hello")

hello

>>> f = f("bye")

done

>>> g = print_n(1)

>>> g("first")("second")("third")

first

done

done

<function inner_print>

"""

def inner_print(x):

if ________________________

print("done")

else:

print(x)

return ____________________

return ________________________

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

1

1. Yes, No, but Sometimes Maybe?
Fill in the environment diagram that results from executing the code below until the entire program is finished,
an error occurs, or all frames are filled. You may not need to use all of the spaces or frames. A complete answer
will:

(a) Add all missing names and parent annotations to all local frames.
(b) Add all missing values created or referenced during execution.
(c) Show the return value for each local frame.

You must list all bindings in the order they first appear in the frame.

func yes(no) [parent=Global]

func no(no) [parent=Global]

Global frame

yes

no

f1: [parent=]

Return Value

f2: [parent=]

Return Value

f3: [parent=]

Return Value

f4: [parent=]

Return Value

def yes(no):
 yes = 'no'
 return no

no = 'no'

def no(no):
 return no + yes(no)

yes = yes(yes)(no)('ok')

	Higher Order Functions

