
CS 61A Nonlocal, Midterm Review
Summer 2020 Discussion 6: July 14, 2020

1 Nonlocal
Until now, you’ve been able to access names in parent frames, but you have not

been able to modify them. The nonlocal keyword can be used to modify a binding

in a parent frame. For example, consider stepper, which uses nonlocal to modify

num:

def stepper(num):

def step():

nonlocal num # declares num as a nonlocal name

num = num + 1 # modifies num in the stepper frame

return num

return step

>>> step1 = stepper(10)

>>> step1() # Modifies and returns num

11

>>> step1() # num is maintained across separate calls to step

12

>>> step2 = stepper(10) # Each returned step function keeps its own state

>>> step2()

11

As illustrated in this example, nonlocal is useful for maintaining state across dif-

ferent calls to the same function.

However, there are two important caveats with nonlocal names:

• Global names cannot be modified using the nonlocal keyword.

• Names in the current frame cannot be overridden using the nonlocal key-

word. This means we cannot have both a local and nonlocal binding with the

same name in a single frame.

Because nonlocal lets you modify bindings in parent frames, we call functions that

use it mutable functions.

2 Nonlocal, Midterm Review

Questions
1.1 Draw the environment diagram for the following code.

def stepper(num):

def step():

nonlocal num

num = num + 1

return num

return step

s = stepper(3)

s()

s()

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Nonlocal, Midterm Review 3

1.2 Write a function that takes in a number n and returns a one-argument function.

The returned function takes in a function that is used to update n. It should return

the updated n.

def memory(n):

"""

>>> f = memory(10)

>>> f(lambda x: x * 2)

20

>>> f(lambda x: x - 7)

13

>>> f(lambda x: x > 5)

True

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Nonlocal, Midterm Review

2 Midterm Review
For any problems that may require it, the tree ADT is provided at the end of this

packet for your convenience. This section is far longer than a typical discussion,

and it is recommended that you also use it as a problem bank for your midterm

studies! Best of luck, you got this!!

Questions
2.1 Draw the environment diagram that results from executing the code below.

from operator import add

six = 1

def ty(one, a):

summer = one(a, six)

return summer

six = ty(add, 6)

summer = ty(add, 6)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Nonlocal, Midterm Review 5

2.2 Write a function that takes in no arguments and returns two functions, prepend and

get, which represent the “add to front of list” and “get the ith item” operations,

respectively. Do not use any python built-in data structures like lists or dictionaries.

You do not necessarily need to use all the lines.

def nonlocalist():

"""

>>> prepend, get = nonlocalist()

>>> prepend(2)

>>> prepend(3)

>>> prepend(4)

>>> get(0)

4

>>> get(1)

3

>>> get(2)

2

>>> prepend(8)

>>> get(2)

3

"""

get = lambda x: "Index out of range!"

def prepend(value):

f = ___

def get(i):

if i == 0:

return value

return ___________________(_______________________)

return _________________________, _________________________

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Nonlocal, Midterm Review

2.3 Fill in the definition of f below such that the interpreter prints as expected. Your

solution must be on one line.

>>> f = __

>>> f = f(10)

1

2

3

4

5

6

7

8

9

10

Then, given your definition of f, what will be printed below? (Assuming that the

above lines have also been executed in the interpreter.)

>>> f

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Nonlocal, Midterm Review 7

2.4 (Spring 2015) Implement the memory function, which takes a number x and a single-

argument function f. It returns a function with a peculiar behavior that you must

discover from the doctests. You may only use names and call expressions in your

solution. You may not write numbers or use features of Python not yet covered in

the course.

square = lambda x: x * x

double = lambda x: 2 * x

def memory(x, f):

"""Return a higher-order function that prints its

memories.

>>> f = memory(3, lambda x: x)

>>> f = f(square)

3

>>> f = f(double)

9

>>> f = f(print)

6

>>> f = f(square)

3

None

"""

def g(h):

print(__)

return _______________________________________

return g

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Nonlocal, Midterm Review

2.5 It’s Hog again! Write a commentary function announce losses that takes in a player

who and returns a commentary function that announces whenever that player loses

points.

def announce_losses(who, last_score=0):

"""

>>> f = announce_losses(0)

>>> f1 = f(10, 0)

>>> f2 = f1(1, 10) # Player 0 loses points due to swine swap

Oh no! Player 0 just lost 9 point(s).

>>> f3 = f2(7, 10)

>>> f4 = f3(7, 11) # Should not announce when player 0's score does not change

>>> f5 = f4(11, 12)

"""

assert who == 0 or who == 1, 'The who argument should indicate a player.'

def say(score0, score1):

if who == 0:

score = ________________________

elif who == 1:

score = ________________________

if ________________________:

__

return ________________________

return say

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Nonlocal, Midterm Review 9

2.6 (Fall 2013) The CS 61A staff has developed a formula for determining what a fox

might say. Given three strings—a start, a middle, and an end—a fox will say the

start string, followed by the middle string repeated a number of times, followed by

the end string. These parts are all separated by single hyphens.

Complete the definition of fox says, which takes the three string parts of the fox’s

statement (start, middle, and end) and a positive integer num indicating how many

times to repeat middle. It returns a string. You cannot use any for or while

statements. Use recursion in repeat. Moreover, you cannot use string operations

other than the + operator to concatenate strings together.

def fox_says(start, middle, end, num):

"""

>>> fox_says('wa', 'pa', 'pow', 3)

'wa-pa-pa-pa-pow'

>>> fox_says('fraka', 'kaka', 'kow', 4)

'fraka-kaka-kaka-kaka-kaka-kow'

"""

def repeat(k):

return start + '-' + repeat(num) + '-' + end

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Nonlocal, Midterm Review

2.7 The study of stress is still an open field of inquiry in linguistics—why do we say

“alaBAma,” but “aLAbama” and “alabaMA” make us cringe? Or how did it come

to be that “AMERICAN history professor” and “american HISTORY professor”

mean two different things? One model that we use to understand stress actually

employs the tree data structure!

In the above diagrams, every node has a “strong” child and a “weak” child, and

primary stress is placed on the leaf that has the greatest number of strong parents.

In the spirit of computational linguistics, let’s write a function that, given one of

these tree structures, identifies the stressed part of a word or phrase.1

def primary_stress(t):

"""

>>> word = tree("", [

tree("w", [tree("s", [tree("min")]), tree("w", [tree("ne")])]),

tree("s", [tree("s", [tree("so")]), tree("w", [tree("ta")])])])

>>> primary_stress(word)

'so'

>>> phrase = tree("", [

tree("s", [tree("s", [tree("law")]), tree("w", [tree("degree")])]),

tree("w", [tree("requirement")])])

>>> primary_stress(phrase)

'law'

"""

def helper(t, num_s):

if is_leaf(t):

return [label(t), num_s]

if label(t) == "s":

num_s = ________________________

return max([__],

key = ________________________)

return ________________________

1Inspiration for this problem comes from Liberman, Mark and Alan Prince. 1977. On stress

and linguistic rhythm. Linguistic Inquiry. 8:249-336., and from the course Linguistics 111

(Phonology).

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Nonlocal, Midterm Review 11

2.8 Consider the subset sum problem: you are given a list of integers and a number k.

Is there a subset of the list that adds up to k? For example:

>>> subset_sum([2, 4, 7, 3], 5) # 2 + 3 = 5

True

>>> subset_sum([1, 9, 5, 7, 3], 2)

False

>>> subset_sum([1, 1, 5, -1], 3)

False

Note: You can use the in operator to determine if an element belongs to a list:

>>> 3 in [1, 2, 3]

True

>>> 4 in [1, 2, 3]

False

def subset_sum(seq, k):

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

12 Nonlocal, Midterm Review

3 Tree ADT
Constructor

def tree(label, branches=[]):

"""Construct a tree with the given label value and a list of branches."""

for branch in branches:

assert is_tree(branch)

return [label] + list(branches)

Selector

def label(tree):

"""Return the label value of a tree."""

return tree[0]

Selector

def branches(tree):

"""Return the list of branches of the given tree."""

return tree[1:]

def is_tree(tree):

"""Returns True if the given tree is a tree, and False otherwise."""

if type(tree) != list or len(tree) < 1:

return False

for branch in branches(tree):

if not is_tree(branch):

return False

return True

For convenience

def is_leaf(tree):

"""Returns True if the given tree's list of branches is empty, and False

otherwise."""

return not branches(tree)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Nonlocal
	Midterm Review
	Tree ADT

