
CS 61A Iterators, Generators, Object-Oriented
Programming
Summer 2020 Discussion 8: July 21, 2020

1 Iterators
>>> a = [1, 2]

>>> a_iter = iter(a)

>>> next(a_iter)

1

>>> next(a_iter)

2

>>> next(a_iter)

StopIteration

An iterable is a data type which contains a collection of values which can be

processed one by one sequentially. Some examples of iterables we’ve seen include

lists, tuples, strings, and dictionaries. In general, any object that can be iterated

over in a for loop can be considered an iterable.

While an iterable contains values that can be iterated over, we need another type of

object called an iterator to actually retrieve values contained in an iterable. Calling

the iter function on an iterable will create an iterator over that iterable. Each

iterator keeps track of its position within the iterable. Calling the next function

on an iterator will give the current value in the iterable and move the iterator’s

position to the next value.

In this way, the relationship between an iterable and an iterator is analogous to the

relationship between a book and a bookmark - an iterable contains the data that is

being iterated over, and an iterator keeps track of your position within that data.

Once an iterator has returned all the values in an iterable, subsequent calls to next

on that iterable will result in a StopIteration exception. In order to be able to

access the values in the iterable a second time, you would have to create a second

iterator. One important application of iterables and iterators is the for loop. We’ve

counts = [1, 2, 3]

for i in counts:

print(i)

equivalent to following pseudocode

items = iter(counts)

while True

if next(items) errors

exit the loop

i = the value that returned

print(i)

seen how we can use for loops to iterate over iterables like lists and dictionaries.

This only works because the for loop implicitly creates an iterator using the built-

in iter function. Python then calls next repeatedly on the iterator, until it raises

StopIteration.

The code to the right shows how we can mimic the behavior of for loops using

while loops.

Note that most iterators are also iterables - that is, calling iter on them will return

an iterator. This means that we can use them inside for loops. However, calling

iter on most iterators will not create a new iterator - instead, it will simply return

the same iterator.

We can also iterate over iterables in a list comprehension or pass in an iterable to

the built-in function list in order to put the items of an iterable into a list.

In addition to the sequences we’ve learned, Python has some built-in ways to create

iterables and iterators. Here are a few useful ones:

• range(start, end) returns an iterable containing numbers from start to end-

1. If start is not provided, it defaults to 0.

2 Iterators, Generators, Object-Oriented Programming

• map(f, iterable) returns a new iterator containing the values resulting from

applying f to each value in iterable.

• filter(f, iterable) returns a new iterator containing only the values in

iterable for which f(value) returns True.

Questions
1.1 What would Python display? If a StopIteration Exception occurs, write StopIteration,

and if another error occurs, write Error.

>>> lst = [6, 1, "a"]

>>> next(lst)

>>> lst_iter = iter(lst)

>>> next(lst_iter)

>>> next(lst_iter)

>>> next(iter(lst))

>>> [x for x in lst_iter]

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Iterators, Generators, Object-Oriented Programming 3

2 Generators
>>> def gen_naturals():

... current = 0

... while True:

... yield current

... current += 1

>>> gen = gen_naturals()

>>> gen

<generator object gen at ...>

>>> next(gen)

0

>>> next(gen)

1

A generator function is a special kind of Python function that uses a yield

statement instead of a return statement to report values. When a generator

function is called, it returns a generator object, which is a type of iterator. To the

right, you can see a function that returns an iterator over the natural numbers.

The yield statement is similar to a return statement. However, while a return

statement closes the current frame after the function exits, a yield statement causes

the frame to be saved until the next time next is called, which allows the generator

to automatically keep track of the iteration state.

Once next is called again, execution resumes where it last stopped and continues

until the next yield statement or the end of the function. A generator function can

have multiple yield statements.

Including a yield statement in a function automatically tells Python that this

function will create a generator. When we call the function, it returns a generator

object instead of executing the body. When the generator’s next method is called,

the body is executed until the next yield statement is executed.

When yield from is called on an iterator, it will yield every value from that iter-

ator. It’s similar to doing the following:

for x in an_iterator:

yield x

The example to the right demonstrates how to use generators to output natural

numbers.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Iterators, Generators, Object-Oriented Programming

Questions
2.1 Write a generator function generate_subsets that returns all subsets of the positive

integers from 1 to n. Each call to this generator’s next method will return a list of

subsets of the set [1, 2, ..., n], where n is the number of previous calls to next.

def generate_subsets():

"""

>>> subsets = generate_subsets()

>>> for _ in range(3):

... print(next(subsets))

...

[[]]

[[], [1]]

[[], [1], [2], [1, 2]]

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Iterators, Generators, Object-Oriented Programming 5

2.2 Implement sum paths gen, which takes in a tree t and and returns a generator which

yields the sum of all the nodes from a path from the root of a tree to a leaf.

You may yield the sums in any order.

def sum_paths_gen(t):

"""

>>> t1 = tree(5)

>>> next(sum_paths_gen(t1))

5

>>> t2 = tree(1, [tree(2, [tree(3), tree(4)]), tree(9)])

>>> sorted(sum_paths_gen(t2))

[6, 7, 10]

"""

if ___________________________:

yield ____________________

for __________________________:

for __________________________:

yield ____________________

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Iterators, Generators, Object-Oriented Programming

3 Object Oriented Programming
In a previous lecture, you were introduced to the programming paradigm known

as Object-Oriented Programming (OOP). OOP allows us to treat data as objects -

like we do in real life.

For example, consider the class Student. Each of you as individuals is an instance

of this class. So, a student Angela would be an instance of the class Student.

Details that all CS 61A students have, such as name, are called instance attributes.

Every student has these attributes, but their values differ from student to student.

An attribute that is shared among all instances of Student is known as a class

attribute. An example would be the students attribute; the number of students

that exist is not a property of any given student but rather of all of them.

All students are able to do homework, attend lecture, and go to office hours. When

functions belong to a specific object, they are said to be methods. In this case,

these actions would be bound methods of Student objects.

Here is a recap of what we discussed above:

• class: a template for creating objects

• instance: a single object created from a class

• instance attribute: a property of an object, specific to an instance

• class attribute: a property of an object, shared by all instances of a class

• method: an action (function) that all instances of a class may perform

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Iterators, Generators, Object-Oriented Programming 7

Questions
3.1 Below we have defined the classes Professor and Student, implementing some of

what was described above. Remember that we pass the self argument implicitly to

instance methods when using dot-notation. There are more questions on the next

page.

class Student:

students = 0 # this is a class attribute

def __init__(self, name, ta):

self.name = name # this is an instance attribute

self.understanding = 0

Student.students += 1

print("There are now", Student.students, "students")

ta.add_student(self)

def visit_office_hours(self, staff):

staff.assist(self)

print("Thanks, " + staff.name)

class Professor:

def __init__(self, name):

self.name = name

self.students = {}

def add_student(self, student):

self.students[student.name] = student

def assist(self, student):

student.understanding += 1

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Iterators, Generators, Object-Oriented Programming

What will the following lines output?

>>> callahan = Professor("Callahan")

>>> elle = Student("Elle", callahan)

>>> elle.visit_office_hours(callahan)

>>> elle.visit_office_hours(Professor("Paulette"))

>>> elle.understanding

>>> [name for name in callahan.students]

>>> x = Student("Vivian", Professor("Stromwell")).name

>>> x

>>> [name for name in callahan.students]

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Iterators, Generators, Object-Oriented Programming 9

3.2 We now want to write three different classes, Server, Client, and Email to simulate

email. Fill in the definitions below to finish the implementation! There are more

methods to fill out on the next page.

We suggest that you approach this problem by first filling out the Email class, then

fill out the register client method of Server, then implement the Client class,

and lastly fill out the send method of the Server class.

class Email:

"""Every email object has 3 instance attributes: the

message, the sender name, and the recipient name.

"""

def __init__(self, msg, sender_name, recipient_name):

class Server:

"""Each Server has an instance attribute clients, which

is a dictionary that associates client names with

client objects.

"""

def __init__(self):

self.clients = {}

def send(self, email):

"""Take an email and put it in the inbox of the client

it is addressed to.

"""

def register_client(self, client, client_name):

"""Takes a client object and client_name and adds them

to the clients instance attribute.

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Iterators, Generators, Object-Oriented Programming

class Client:

"""Every Client has instance attributes name (which is

used for addressing emails to the client), server

(which is used to send emails out to other clients), and

inbox (a list of all emails the client has received).

"""

def __init__(self, server, name):

self.inbox = []

def compose(self, msg, recipient_name):

"""Send an email with the given message msg to the

given recipient client.

"""

def receive(self, email):

"""Take an email and add it to the inbox of this

client.

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Iterators, Generators, Object-Oriented Programming 11

4 Inheritance
Python classes can implement a useful abstraction technique known as inheritance.

To illustrate this concept, consider the following Dog and Cat classes.

class Dog():

def __init__(self, name, owner):

self.is_alive = True

self.name = name

self.owner = owner

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name + " says woof!")

class Cat():

def __init__(self, name, owner, lives=9):

self.is_alive = True

self.name = name

self.owner = owner

self.lives = lives

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name + " says meow!")

Notice that because dogs and cats share a lot of similar qualities, there is a lot of

repeated code! To avoid redefining attributes and methods for similar classes, we

can write a single superclass from which the similar classes inherit. For example,

we can write a class called Pet and redefine Dog as a subclass of Pet:

class Pet():

def __init__(self, name, owner):

self.is_alive = True # It's alive!!!

self.name = name

self.owner = owner

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name)

class Dog(Pet):

def talk(self):

print(self.name + ' says woof!')

Inheritance represents a hierarchical relationship between two or more classes where

one class is a more specific version of the other, e.g. a dog is a pet. Because Dog

inherits from Pet, we didn’t have to redefine init or eat. However, since we want

Dog to talk in a way that is unique to dogs, we did override the talk method.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

12 Iterators, Generators, Object-Oriented Programming

Questions
4.1 Below is a skeleton for the Cat class, which inherits from the Pet class. To com-

plete the implementation, override the init and talk methods and add a new

lose_life method.

Hint: You can call the init method of Pet to set a cat’s name and owner.

class Cat(Pet):

def __init__(self, name, owner, lives=9):

def talk(self):

""" Print out a cat's greeting.

>>> Cat('Thomas', 'Tammy').talk()

Thomas says meow!

"""

def lose_life(self):

"""Decrements a cat's life by 1. When lives reaches zero, 'is_alive'

becomes False. If this is called after lives has reached zero, print out

that the cat has no more lives to lose.

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Iterators, Generators, Object-Oriented Programming 13

4.2 More cats! Fill in this implemention of a class called NoisyCat, which is just like a

normal Cat. However, NoisyCat talks a lot – twice as much as a regular Cat!

class _____________________: # Fill me in!

"""A Cat that repeats things twice."""

def __init__(self, name, owner, lives=9):

Is this method necessary? Why or why not?

def talk(self):

"""Talks twice as much as a regular cat.

>>> NoisyCat('Magic', 'James').talk()

Magic says meow!

Magic says meow!

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

14 Iterators, Generators, Object-Oriented Programming

4.3 (Summer 2013 Final) What would Python display?

class A:

def f(self):

return 2

def g(self, obj, x):

if x == 0:

return A.f(obj)

return obj.f() + self.g(self, x - 1)

class B(A):

def f(self):

return 4

>>> x, y = A(), B()

>>> x.f()

>>> B.f()

>>> x.g(x, 1)

>>> y.g(x, 2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Iterators
	Generators
	Object Oriented Programming
	Inheritance

