
CS 61A Tail Recursion and Macros
Summer 2020 Discussion 11: July 30, 2020

1 Tail Recursion
Scheme implements tail-call optimization, which allows programmers to write re-

cursive functions that use a constant amount of space. A tail call occurs when a

function calls another function as its last action of the current frame. In this

case, the frame is no longer needed, and we can remove it from memory. In other

words, if this is the last thing you are going to do in a function call, we can reuse

the current frame instead of making a new frame.

Consider this implementation of factorial.

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

The recursive call occurs in the last line, but it is not the last expression evaluated.

After calling (fact (- n 1)), the function still needs to multiply that result with

n. The final expression that is evaluated is a call to the multiplication function, not

fact itself. Therefore, the recursive call is not a tail call.

We can rewrite this function using a helper function that remembers the temporary

product that we have calculated so far in each recursive step.

(define (fact n)

(define (fact-tail n result)

(if (= n 0)

result

(fact-tail (- n 1) (* n result))))

(fact-tail n 1))

fact-tail makes a single recursive call to fact-tail, and that recursive call is the

last expression to be evaluated, so it is a tail call. Therefore, fact-tail is a tail

recursive process. We say that a recursive function is tail recursive if all of its

recursive calls are tail calls.

Using a constant number of frames
Tail recursive processes can use a constant amount of memory because each recursive

call frame does not need to be saved.

Our original implementation of fact required the program to keep each frame open

because the last expression multiplies the recursive result with n. Therefore, at each

frame, we need to remember the current value of n.

2 Tail Recursion and Macros

In contrast, the tail recursive fact-tail does not require the interpreter to remem-

ber the values for n or result in each frame. Instead, we can just update the value

of n and result of the current frame! Therefore, we can keep reusing a single frame

to complete this calculation.

Tail context
When trying to identify whether a given function call within the body of a function

is a tail call, we look for whether the call expression is in tail context.

Given that each of the following expressions is the last expression in the body of

the function, the following expressions are tail contexts:

• the second or third operand in an if expression

• any of the non-predicate sub-expressions in a cond expression (i.e. the second

expression of each clause)

• the last operand in an and or an or expression

• the last operand in a begin expression’s body

• the last operand in a let expression’s body

For example, in the expression (begin (+ 2 3) (- 2 3) (* 2 3)), (* 2 3) is a

tail call because it is the last operand expression to be evaluated.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Tail Recursion and Macros 3

Questions
1.1 For each of the following functions, identify whether it contains a recursive call in

a tail context. Also indicate if it uses a constant number of frames.

(define (question-b x y)

(if (= x 0) y

(question-b (- x 1) (+ y x))))

(define (question-c x y)

(if (> x y)

(question-c (- y 1) x)

(question-c (+ x 10) y)))

(define (question-d n)

(if (question-d n)

(question-d (- n 1))

(question-d (+ n 10))))

(define (question-e n)

(cond ((= n 0) 1)

((question-e (- n 1)) (question-e (- n 2)))

(else (begin (print 2) (question-e (- n 3))))))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Tail Recursion and Macros

1.2 Write a tail recursive function, reverse, that takes in a Scheme list and returns a

reversed copy.

(define (reverse lst)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Tail Recursion and Macros 5

1.3 Write a tail recursive function, insert, that takes in a number and a sorted list.

The function returns a sorted copy with the number inserted in the correct position.

For example, (insert 6 ’(2 4 5 7)) should result in (2 4 5 6 7).

(define (insert n lst)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Tail Recursion and Macros

2 Macros in Python?
Imagine if we wanted to write a function in python that would create and evaluate

the following line of code:

[<expr> for i in range(5)]

Where we could pass in any arbitrary expression <expr>, that would then be eval-

uated 5 times and have the results listed. This is the kind of problem that macros

were made for!

A macro is a procedure that operates on unevaluated code. In the example above,

<expr> is not necessarily an object, but could be any piece of code, such as print("Hello"),

[j ** 2 for j in range(i)], or i >= 5. For these expressions it is important

to our problem statement that they not be evaluated until after they have been

inserted into our list comprehension, either because they have side effects that will

be apparent in the global frame, or because they depend on i in some way (there

can be other reasons too!). So, we need a procedure that, instead of manipulating

objects, manipulates code itself. This is where macros come in.

Unfortunately for us, Python does not have the ability to make true macros. Let’s

see what happens if we try to solve this problem with a traditional function.

def list_5(expr):

return [expr for i in range(5)]

>>> lst = list_5(print(10))

10

>>> lst

[None, None, None, None, None]

This isn’t quite what we want. Because of Python evaluation rules, instead of

evaluating a list of 5 print(10) statements, our expr was evaluated before the

function was ever called, meaning 10 was only printed once.

The issue here is order of evaluation—we don’t want our expression parameter to

be evaluated until after it is inserted into our list comprehension. Even though we

don’t have the ability to make real macros when writing Python, we can write a

function in the spirit of macros by using the eval function.

def list_5(expr):

return eval("[" + expr + " for i in range(5)]")

>>> lst = list_5("print(10)")

10

10

10

10

10

>>> lst

[None, None, None, None, None]

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Tail Recursion and Macros 7

Now we see the number 10 printed 5 times as a side effect of our function, just like

we want! We circumvented Python’s evaluate-operands-before-evaluating-function

body rule by passing in our desired expression as a string. Then, after we con-

structed our list comprehension in string form we used the eval function to force

evaluation of the output to be the last step in the execution of this function. We

were able to write code that took code as a parameter and restructured it in the

form of new code!

Note: Although this is a cool hack we can do with Python, its usage is unfortunately

rather limited. The eval function will throw a SyntaxError if it is passed any

“compound” blocks such as if: ..., while: ..., for: ..., etc. (this does not

include list comprehensions, or one-line if-statements such as 1 if a > b else 0.)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Tail Recursion and Macros

Questions
2.1 Write a “macro” in Python called make lambda that takes in two parameters: params,

a string containing a comma-separated list of variable names; and body, a Python

expression in string form, and returns a lambda function that takes params as its

parameters and body as its body.

def make_lambda(params, body):

"""

>>> f = make_lambda("x, y", "x + y")

>>> f

<function <lambda> at ...>

>>> f(1, 2)

3

>>> g = make_lambda("a, b, c", "c if a > b else -c")

>>> g(1, 2, 3)

-3

>>> make_lambda("f, x, y", "f(x, y)")(f, 1, 2)

3

"""

2.2 (Fun problem that is certainly not in scope for 61A) Python has a construction

that’s just like the quasiquote in Scheme! For example, the following two lines of

code are equivalent:

>>> x = 2

>>> "The value of x is: " + x

'The value of x is 2'

>>> f"The value of x is {x}"

'The value of x is 2'

A string with an f (which is called an “f-String”) is like a quasiquoted expression

in Scheme, and anything in that string in braces will be treated as though it has

been unquoted. Try to rewrite make lambda using this syntax!

def make_lambda(params, body):

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Tail Recursion and Macros 9

3 Macros in Scheme
Now let’s talk about real macros, in Scheme. So far we’ve been able to define

our own procedures in Scheme using the define special form. When we call these

procedures, we have to follow the rules for evaluating call expressions, which involve

evaluating all the operands.

We know that special form expressions do not follow the evaluation rules of call

expressions. Instead, each special form has its own rules of evaluation, which may

include not evaluating all the operands. Wouldn’t it be cool if we could define

our own special forms where we decide which operands are evaluated? Consider

the following example where we attempt to write a function that evaluates a given

expression twice:

scm> (define (twice f) (begin f f))

twice

scm> (twice (print 'woof))

woof

Since twice is a regular procedure, a call to twice will follow the same rules of

evaluation as regular call expressions; first we evaluate the operator and then we

evaluate the operands. That means that woof was printed when we evaluated the

operand (print ’woof). Inside the body of twice, the name f is bound to the value

undefined, so the expression (begin f f) does nothing at all!

The problem here is clear: we need to prevent the given expression from evaluating

until we’re inside the body of the procedure. This is where the define-macro special

form, which has identical syntax to the regular define form, comes in:

scm> (define-macro (twice f) (list 'begin f f))

twice

define-macro allows us to define what’s known as a macro, which is simply a way

for us to combine unevaluated input expressions together into another expression.

When we call macros, the operands are not evaluated, but rather are treated as

Scheme data. This means that any operands that are call expressions or special

form expression are treated like lists.

If we call (twice (print ’woof)), f will actually be bound to the list (print

’woof) instead of the value undefined. Inside the body of define-macro, we can

insert these expressions into a larger Scheme expression. In our case, we would want

a begin expression that looks like the following:

(begin (print 'woof) (print 'woof))

As Scheme data, this expression is really just a list containing three elements: begin

and (print ’woof) twice, which is exactly what (list ’begin f f) returns. Now,

when we call twice, this list is evaluated as an expression and (print ’woof) is

evaluated twice.

scm> (twice (print 'woof))

woof

woof

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Tail Recursion and Macros

To recap, macros are called similarly to regular procedures, but the rules for eval-

uating them are different. We evaluated lambda procedures in the following way:

1. Evaluate operator

2. Evaluate operands

3. Apply operator to operands, evaluating the body of the procedure

However, the rules for evaluating calls to macro procedures are:

1. Evaluate operator

2. Apply operator to unevaluated operands

3. Evaluate the expression returned by the macro in the frame it was called in.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Tail Recursion and Macros 11

Questions
3.1 Write a macro that takes in two expressions and or’s them together (applying short-

circuiting rules). However, do this without using the or special form. You may also

assume the name v1 doesn’t appear anywhere outside of our macro. Fill in the

implementation below.

(define-macro (or-macro expr1 expr2)

`(let ((v1 ___))

(if __

___)))

scm> (or-macro (print 'bork) (/ 1 0))

bork

scm> (or-macro (= 1 0) (+ 1 2))

3

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

12 Tail Recursion and Macros

3.2 Write a macro that takes in a call expression and strips out every other argument.

The first argument is kept, the second is removed, and so on. You may find it

helpful to write a helper function.

(define-macro (prune-expr expr)

scm> (prune-expr (+ 10))

10

scm> (prune-expr (+ 10 100))

10

scm> (prune-expr (+ 10 100 1000))

1010

scm> (prune-expr (prune-expr (+ 10 100) 'garbage))

10

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Tail Recursion and Macros 13

3.3 Using macros, let’s make a new special form, when, that has the following structure:

(when <condition>

(<expr1> <expr2> <expr3> ...))

If the condition is not false (a truthy expression), all the subsequent operands are

evaluated in order and the value of the last expression is returned. Otherwise, the

entire when expression evaluates to okay.

scm> (when (= 1 0) ((/ 1 0) 'error))

okay

scm> (when (= 1 1) ((print 6) (print 1) 'a))

6

1

a

(a) Fill in the skeleton below to implement this without using quasiquotes.

(define-macro (when condition exprs)

(list 'if___))

(b) Now, implement the macro using quasiquotes.

(define-macro (when condition exprs)

`(if ___))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Tail Recursion
	Macros in Python?
	Macros in Scheme

