
CS 61A Streams
Summer 2020 Discussion 12: August 4, 2020

1 Streams
In Python, we can use iterators to represent infinite sequences (for example, the

generator for all natural numbers). However, Scheme does not support iterators.

Let’s see what happens when we try to use a Scheme list to represent an infinite

sequence of natural numbers:

scm> (define (naturals n)

(cons n (naturals (+ n 1))))

naturals

scm> (naturals 0)

Error: maximum recursion depth exceeded

Because cons is a regular procedure and both its operands must be evaluted before

the pair is constructed, we cannot create an infinite sequence of integers using

a Scheme list. Instead, our Scheme interpreter supports streams, which are lazy

Scheme lists. The first element is represented explicitly, but the rest of the stream’s

elements are computed only when needed. Computing a value only when it’s needed

is also known as lazy evaluation.

scm> (define (naturals n)

(cons-stream n (naturals (+ n 1))))

naturals

scm> (define nat (naturals 0))

nat

scm> (car nat)

0

scm> (cdr nat)

#[promise (not forced)]

scm> (car (cdr-stream nat))

1

scm> (car (cdr-stream (cdr-stream nat)))

2

We use the special form cons-stream to create a stream:

(cons-stream <operand1> <operand2>)

cons-stream is a special form because the second operand is not evaluated when

evaluating the expression. To evaluate this expression, Scheme does the following:

1. Evaluate the first operand.

2. Construct a promise containing the second operand.

3. Return a pair containing the value of the first operand and the promise.



2 Streams

To actually get the rest of the stream, we must call cdr-stream on it to force

the promise to be evaluated. Note that this argument is only evaluated once and

is then stored in the promise; subsequent calls to cdr-stream returns the value

without recomputing it. This allows us to efficiently work with infinite streams like

the naturals example above. We can see this in action by using a non-pure function

to compute the rest of the stream:

scm> (define (compute-rest n)

...> (print 'evaluating!)

...> (cons-stream n nil))

compute-rest

scm> (define s (cons-stream 0 (compute-rest 1)))

s

scm> (car (cdr-stream s))

evaluating!

1

scm> (car (cdr-stream s))

1

Here, the expression compute-rest 1 is only evaluated the first time cons-stream

is called, so the symbol evaluating! is only printed the first time.

When displaying a stream, the first element of the stream and the promise are

displayed separated by a dot (this indicates that they are part of the same pair,

with the promise as the cdr). If the value in the promise has not been evaluated

by calling cdr-stream, we consider it to be not forced. Otherwise, we consider it

forced.

scm> (define s (cons-stream 1 nil))

s

scm> s

(1 . #[promise (not forced)])

scm> (cdr-stream s) ; nil

()

scm> s

(1 . #[promise (forced)])

Streams are very similar to Scheme lists in that they are also recursive structures.

Just like the cdr of a Scheme list is either another Scheme list or nil, the cdr-stream

of a stream is either a stream or nil. The difference is that whereas both arguments

to cons are evaluated upon calling cons, the second argument to cons-stream isn’t

evaluated until the first time that cdr-stream is called.

Here’s a summary of what we just went over:

• nil is the empty stream

• cons-stream constructs a stream containing the value of the first operand and

a promise to evaluate the second operand

• car returns the first element of the stream

• cdr-stream computes and returns the rest of stream

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Streams 3

Questions
1.1 What would Scheme display?

As you work through these problems, remember that streams have two important

components:

• Lazy evaluation – so the remainder of the stream isn’t computed until explicitly

requested.

• Memoization – so anything we compute won’t be recomputed.

The examples here stretch these concepts to the limit. In most practical use cases,

you may find you rarely need to redefine functions that compute the remainder of

the stream.

scm> (define (has-even? s)

(cond ((null? s) #f)

((even? (car s)) #t)

(else (has-even? (cdr-stream s)))))

has-even?

scm> (define (f x) (* 3 x))

f

scm> (define nums (cons-stream 1 (cons-stream (f 3) (cons-stream (f 5) nil))))

nums

scm> nums

scm> (cdr nums)

scm> (cdr-stream nums)

scm> nums

scm> (define (f x) (* 2 x))

f

scm> (cdr-stream nums)

scm> (cdr-stream (cdr-stream nums))

scm> (has-even? nums)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



4 Streams

1.2 Using streams can be tricky! Compare the following two implementations of filter-stream,

the first is a correct implementation whereas the second is wrong in some way.

What’s wrong with the second implementation?

; Correct

(define (filter-stream f s)

(cond

((null? s) nil)

((f (car s)) (cons-stream (car s) (filter-stream f (cdr-stream s))))

(else (filter-stream f (cdr-stream s)))))

; Incorrect

(define (filter-stream f s)

(if (null? s) nil

(let ((rest (filter-stream f (cdr-stream s))))

(if (f (car s))

(cons-stream (car s) rest)

rest))))

1.3 Write a function map-stream, which takes a function f and a stream s. It returns a

new stream which has all the elements from s, but with f applied to each one.

(define (map-stream f s)

scm> (define evens (map-stream (lambda (x) (* x 2)) nat))

evens

scm> (car (cdr-stream evens))

2

1.4 Write a function slice which takes in a stream s, a start, and an end. It should

return a Scheme list that contains the elements of s between index start and end,

not including end. If the stream ends before end, you can return nil.

(define (slice s start end)

scm> (define nat (naturals 0)) ; See naturals procedure defined earlier

nat

scm> (slice nat 4 12)

(4 5 6 7 8 9 10 11)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Streams 5

1.5 Since streams only evaluate the next element when they are needed, we can combine

infinite streams together for interesting results! Use it to define a few of our favorite

sequences. We’ve defined the function combine-with for you below, as well as an

example of how to use it to define the stream of even numbers.

(define (combine-with f xs ys)

(if (or (null? xs) (null? ys))

nil

(cons-stream

(f (car xs) (car ys))

(combine-with f (cdr-stream xs) (cdr-stream ys)))))

scm> (define evens (combine-with + (naturals 0) (naturals 0)))

evens

scm> (slice evens 0 10)

(0 2 4 6 8 10 12 14 16 18)

For these questions, you may use the naturals stream in addition to combine-with.

i. (define factorials

scm> (slice factorials 0 10)

(1 1 2 6 24 120 720 5040 40320 362880)

ii. (define fibs

scm> (slice fibs 0 10)

(0 1 1 2 3 5 8 13 21 34)

iii. (Extra for practice) Write exp, which returns a stream where the nth term

represents the degree-n polynomial expantion for ex, which is
∑n

i=0 x
i/i!.

You may use factorials in addition to combine-with and naturals in your

solution.

(define (exp x)

scm> (slice (exp 2) 0 5)

(1 3 5 6.333333333333333 7)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



6 Streams

1.6 We can even represent the sequence of all prime numbers as an infinite stream!

Define a function sieve, which takes in a stream of increasing numbers and returns

a stream containing only those numbers which are not multiples of an earlier number

in the stream. We can define primes by sifting all natural numbers starting at 2.

Look online for the Sieve of Eratosthenes if you need some inspiration.

Hint: You might find using filter-stream as defined earlier helpful.

(define (sieve s)

(define primes

(sieve (naturals 2)))

scm> (slice primes 0 10)

(2 3 5 7 11 13 17 19 23 29)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Streams 7

2 Extra Questions
2.1 Write a macro that takes an expression and returns a parameter-less lamba proce-

dure with the expression as its body

(define-macro (make-lambda expr)

scm> (make-lambda (print 'hi))

(lambda () (print (quote hi)))

scm> (make-lambda (/ 1 0))

(lambda () (/ 1 0))

scm> (define print-3 (make-lambda (print 3)))

print-3

scm> (print-3)

3

2.2 Using the make-lambda macro you defined Question 1, define make-stream, a macro

which returns a pair of elements, where the second element is not evaluated until

cdr-stream is called on it. Also define the procedure cdr-stream, which takes in

a stream returned by make-stream and returns the result of evaluating the second

element in the stream pair.

Unlike the streams we’ve seen in lecture and earlier in discussion, if you repeat-

edly call cdr-stream on a stream returned by make-stream, you may evaluate an

expression multiple times.

(define-macro (make-stream first second)

(define (cdr-stream stream)

scm> (define a (make-stream (print 1) (make-stream (print 2) nil)))

1

a

scm> (define b (cdr-stream a))

2

b

scm> (cdr-stream b)

()

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.


	Streams
	Extra Questions

