
Exam: CS61A Summer 2020 Midterm

Name: Solution Key

Email: example_key

secure
Point breakdown
 q1: 1.0/1

Score:
 Total: 1.0

Reskeletonized solution follows

==
def cat(password, limit):
 " Write a higher-order function `cat` that returns a one-argument\n funct¶
ion `attempt`. Every time `attempt` is called, it checks to see if its argument\¶
n matches the password at the corresponding index.\n\n If the password ent¶
irely matches, return a success string. If more than `limit`\n number of inco¶
rrect hacks are attempted, you should return an error string.\n For details, ¶
see the doctest.\n\n\n Note: to comment out a blank that covers an entire lin¶
e, just put down 'unnecessary' (with quotes)\n\n >>> hacker = cat([1,2], 2)\n¶
 >>> hacker(1)\n >>> hacker(2)\n 'Successfully unlocked!'\n >>> hack¶
er = cat([1,2], 1)\n >>> hacker(1)\n >>> hacker(3) # used up attempts to g¶
ain access\n >>> hacker(2) # correct attempt to gain access, but already lock¶
ed\n 'The safe is now inaccessible!'\n >>> hacker = cat([1,2], 2)\n >>>¶
 hacker(1)\n >>> hacker(3) # 1 attempt left to gain access\n >>> hacker(2)¶
 # correct attempt to gain access\n 'Successfully unlocked!'\n "
 num_incorrect = 0
 index = 0

 def attempt(digit):
 nonlocal num_incorrect
 nonlocal index
 if (num_incorrect >= limit):
 return 'The safe is now inaccessible!'
 if (password[index] == digit):
 index += 1
 if (index == len(password)):
 return 'Successfully unlocked!'
 else:
 num_incorrect += 1
 return attempt
==

Original code follows

==
def cat(password, limit):
 """ Write a higher-order function `cat` that returns a one-argument
 function `attempt`. Every time `attempt` is called, it checks to see if its ¶
argument
 matches the password at the corresponding index.

 If the password entirely matches, return a success string. If more than `lim¶
it`
 number of incorrect hacks are attempted, you should return an error string.

 For details, see the doctest.

 Note: to comment out a blank that covers an entire line, just put down 'unne¶
cessary' (with quotes)

 >>> hacker = cat([1,2], 2)
 >>> hacker(1)
 >>> hacker(2)
 'Successfully unlocked!'
 >>> hacker = cat([1,2], 1)
 >>> hacker(1)
 >>> hacker(3) # used up attempts to gain access
 >>> hacker(2) # correct attempt to gain access, but already locked
 'The safe is now inaccessible!'
 >>> hacker = cat([1,2], 2)
 >>> hacker(1)
 >>> hacker(3) # 1 attempt left to gain access
 >>> hacker(2) # correct attempt to gain access
 'Successfully unlocked!'
 """
 num_incorrect = 0
 index = 0
 def attempt(digit):
 nonlocal num_incorrect
 nonlocal index
 if num_incorrect >= limit:
 return 'The safe is now inaccessible!'
 if password[index] == digit:
 index += 1
 if index == len(password):
 return "Successfully unlocked!"
 else:
 num_incorrect += 1
 return attempt
==

schedule
Point breakdown
 q2: 1.0/1

Score:
 Total: 1.0

Reskeletonized solution follows

==
def schedule(galaxy, sum_to, max_digit):
 '\n A \'galaxy\' is a string which contains either digits or \'?\'s.\n\n ¶
 A \'completion\' of a galaxy is a string that is the same as galaxy, except\n¶
 with digits replacing each of the \'?\'s.\n\n Your task in this question ¶
is to find all completions of the given `galaxy`\n that use digits up to `max¶
_digit`, and whose digits sum to `sum_to`.\n\n Note 1: the function int can b¶
e used to convert a string to an integer and str\n can be used to convert¶
 an integer to a string as such:\n\n >>> int("5")\n 5\n >>>¶
 str(5)\n \'5\'\n\n Note 2: Indexing and slicing can be used on string¶
s as well as on lists.\n\n >>> \'evocative\'[3]\n \'c\'\n >¶
>> \'evocative\'[3:]\n \'cative\'\n >>> \'evocative\'[:6]\n ¶
 \'evocat\'\n >>> \'evocative\'[3:6]\n \'cat\'\n\n\n >>> schedu¶
le(\'?????\', 25, 5)\n [\'55555\']\n >>> schedule(\'???\', 5, 2)\n [\'1¶
22\', \'212\', \'221\']\n >>> schedule(\'?2??11?\', 5, 3)\n [\'0200111\', ¶
\'0201110\', \'0210110\', \'1200110\']\n '

 def schedule_helper(galaxy, sum_sofar, index):
 if ((index >= len(galaxy)) and (sum_sofar == sum_to)):
 return [galaxy]
 elif ((sum_sofar > sum_to) or (index >= len(galaxy))):
 return []
 elif (galaxy[index] != '?'):
 return schedule_helper(galaxy, (sum_sofar + int(galaxy[index])), (in¶
dex + 1))
 ans = []
 for x in range((max_digit + 1)):
 modified_galaxy = ((galaxy[:index] + str(x)) + galaxy[(index + 1):])¶

 ans += schedule_helper(modified_galaxy, (sum_sofar + x), (index + 1)¶
)
 return ans
 return schedule_helper(galaxy, 0, 0)
==

Original code follows

==
def schedule(galaxy, sum_to, max_digit):
 """
 A 'galaxy' is a string which contains either digits or '?'s.

 A 'completion' of a galaxy is a string that is the same as galaxy, except
 with digits replacing each of the '?'s.

 Your task in this question is to find all completions of the given `galaxy`
 that use digits up to `max_digit`, and whose digits sum to `sum_to`.

 Note 1: the function int can be used to convert a string to an integer and s¶
tr
 can be used to convert an integer to a string as such:

 >>> int("5")
 5
 >>> str(5)
 '5'

 Note 2: Indexing and slicing can be used on strings as well as on lists.

 >>> 'evocative'[3]
 'c'
 >>> 'evocative'[3:]
 'cative'
 >>> 'evocative'[:6]
 'evocat'
 >>> 'evocative'[3:6]
 'cat'

 >>> schedule('?????', 25, 5)
 ['55555']
 >>> schedule('???', 5, 2)
 ['122', '212', '221']
 >>> schedule('?2??11?', 5, 3)
 ['0200111', '0201110', '0210110', '1200110']
 """
 def schedule_helper(galaxy, sum_sofar, index):
 if index >= len(galaxy) and sum_sofar == sum_to:
 return [galaxy]
 elif sum_sofar > sum_to or index >= len(galaxy):
 return []
 elif galaxy[index] != '?':
 return schedule_helper(galaxy, sum_sofar + int(galaxy[index]), index¶
 + 1)
 ans = []
 for x in range(max_digit + 1):
 modified_galaxy = galaxy[:index] + str(x) + galaxy[index + 1:]
 ans += schedule_helper(modified_galaxy, sum_sofar + x, index + 1)
 return ans

 return schedule_helper(galaxy, 0, 0)
==

consume
Point breakdown
 q3: 1.0/1

Score:
 Total: 1.0

Reskeletonized solution follows

==
'\nLet a `painting` be a self-referential function that\n - takes in one inte¶
ger\n - returns two values, another painting and well as an integer\n\nFor an¶
 example see the function `identity_painting` below.\n\nYou have two tasks in th¶
is assignment, to implement the functions `microscope`\nand `plush`. Both have t¶
heir behavior defined by their doctests.\n\nIt is not necessary to implement `mi¶
croscope` correctly to get the points for\n`plush`. However, the ok test cases f¶
or `plush` will fail if you have not correctly\nimplemented `microscope`.\n'

def identity_painting(x):
 return (identity_painting, x)

def microscope(a=0, s=1):
 '\n This function returns a painting function that processes a sequence\n¶
 of integers, and returns the alternating sum of all integers seen thus\n ¶
far (see doctest for an example).\n\n >>> painting_a = microscope()\n >>> ¶
painting_b, x = painting_a(2)\n >>> x # 2\n¶
 2\n >>> painting_c, x = painting_b(8)\n >>> x ¶
 # 2 - 8\n -6\n >>> painting_d, x = painting_c(12)\n >>> x ¶
 # 2 - 8 + 12\n 6\n >>> painting_e, x = pain¶
ting_d(30)\n >>> x # 2 - 8 + 12 - 30\n -¶
24\n >>> painting_b_again, x = painting_a(100)\n >>> x ¶
 # 100 [note that we are using painting_a not painting_d here]\n ¶
 100\n '

 def painting(x):
 return (microscope((a + (s * x)), (- s)), (a + (s * x)))
 return painting

def plush(painting, items):
 '\n The function `plush` takes in a `painting` and a nonempty list of `it¶
ems` and\n runs the given `painting` on each of the `items` in turn, returnin¶
g the final\n numeric result.\n\n For example, on the items [1, 2, 3, 4, 5¶
] with the painting microscope\n we return 1 - 2 + 3 - 4 + 5 = 3\n\n >>> p¶
lush(microscope(), [1, 2, 3, 4, 5])\n 3\n >>> plush(microscope(), [4000])\¶
n 4000\n >>> plush(microscope(), [2, 90])\n -88\n >>> plush(identity¶
_painting, [2, 90])\n 90\n '
 (painting, x) = painting(items[0])
 if (len(items) == 1):
 return x
 return plush(painting, items[1:])
==

Original code follows

==
"""
Let a `painting` be a self-referential function that
 - takes in one integer
 - returns two values, another painting and well as an integer

For an example see the function `identity_painting` below.

You have two tasks in this assignment, to implement the functions `microscope`
and `plush`. Both have their behavior defined by their doctests.

It is not necessary to implement `microscope` correctly to get the points for
`plush`. However, the ok test cases for `plush` will fail if you have not correc¶
tly
implemented `microscope`.
"""

def identity_painting(x):
 return identity_painting, x

def microscope(a=0, s=1):
 """
 This function returns a painting function that processes a sequence
 of integers, and returns the alternating sum of all integers seen thus
 far (see doctest for an example).

 >>> painting_a = microscope()
 >>> painting_b, x = painting_a(2)
 >>> x # 2
 2
 >>> painting_c, x = painting_b(8)
 >>> x # 2 - 8
 -6
 >>> painting_d, x = painting_c(12)
 >>> x # 2 - 8 + 12
 6
 >>> painting_e, x = painting_d(30)
 >>> x # 2 - 8 + 12 - 30
 -24
 >>> painting_b_again, x = painting_a(100)
 >>> x # 100 [note that we are using painti¶
ng_a not painting_d here]
 100
 """
 def painting(x):
 return microscope(a + s * x, -s), a + s * x
 return painting

def plush(painting, items):
 """
 The function `plush` takes in a `painting` and a nonempty list of `items` an¶
d

 runs the given `painting` on each of the `items` in turn, returning the fina¶
l
 numeric result.

 For example, on the items [1, 2, 3, 4, 5] with the painting microscope
 we return 1 - 2 + 3 - 4 + 5 = 3

 >>> plush(microscope(), [1, 2, 3, 4, 5])
 3
 >>> plush(microscope(), [4000])
 4000
 >>> plush(microscope(), [2, 90])
 -88
 >>> plush(identity_painting, [2, 90])
 90
 """
 painting, x = painting(items[0])
 if len(items) == 1:
 return x
 return plush(painting, items[1:])
==

exact_copy
Point breakdown
 q4: 1.0/1

Score:
 Total: 1.0

Reskeletonized solution follows

==
def lemon(xv):
 '\n A lemon-copy is a perfect replica of a nested list\'s box-and-pointer¶
 structure.\n If an environment diagram were drawn out, the two should be¶
 entirely\n separate but identical.\n\n A `xv` is a list that only con¶
tains ints and other lists.\n\n The function `lemon` generates a lemon-copy o¶
f the given list `xv`.\n\n Note: The `isinstance` function takes in a value a¶
nd a type and determines\n whether the value is of the given type. So\n\n¶
 >>> isinstance("abc", str)\n True\n >>> isinstance("abc", ¶
list)\n False\n\n Here\'s an example, where lemon_y = lemon(y)\n\n\n ¶
 +-----+-----+ +-----+-----+-----+\n ¶
 | | | | | | |\n ¶
 | + | +-------------> | 200 | 300 | + |\n y +------¶
----------> | | | | | | | | |\n ¶
 +-----+-----+ +--> +-----+-----+-----+\n lemon_y +-+ ¶
 | | ^ |\n | +--¶
--------------+ | |\n | ¶
 +-----------+\n |\n | +¶
-----+-----+ +-----+-----+-----+\n | | ¶
| | | | | |\n +-------> | + | +-¶
------------> | 200 | 300 | + |\n | | | | ¶
 | | | | |\n +-----+-----+ +¶
--> +-----+-----+-----+\n | | ¶
 ^ |\n +----------------+ | ¶
 |\n +-----------+\¶
n\n >>> x = [200, 300]\n >>> x.append(x)\n >>> y = [x, x] ¶
this is the `y` from the doctests\n >>> lemon_y = lemon(y) # this is t¶
he `lemon_y` from the doctests\n >>> # check that lemon_y has the same struct¶
ure as y\n >>> len(lemon_y)\n 2\n >>> lemon_y[0] is lemon_y[1]\n Tru¶
e\n >>> len(lemon_y[0])\n 3\n >>> lemon_y[0][0]\n 200\n >>> lemon¶
_y[0][1]\n 300\n >>> lemon_y[0][2] is lemon_y[0]\n True\n >>> # chec¶
k that lemon_y and y have no list objects in common\n >>> lemon_y is y\n F¶
alse\n >>> lemon_y[0] is y[0]\n False\n '
 lemon_lookup = []

 def helper(xv):
 if isinstance(xv, int):
 return xv
 for old_new in lemon_lookup:
 if (old_new[0] is xv):
 return old_new[1]
 new_xv = []
 lemon_lookup.append((xv, new_xv))
 for element in xv:

 new_xv.append(helper(element))
 return new_xv
 return helper(xv)
==

Original code follows

==
def lemon(xv):
 """
 A lemon-copy is a perfect replica of a nested list's box-and-pointer structu¶
re.
 If an environment diagram were drawn out, the two should be entirely
 separate but identical.

 A `xv` is a list that only contains ints and other lists.

 The function `lemon` generates a lemon-copy of the given list `xv`.

 Note: The `isinstance` function takes in a value and a type and determines
 whether the value is of the given type. So

 >>> isinstance("abc", str)
 True
 >>> isinstance("abc", list)
 False

 Here's an example, where lemon_y = lemon(y)

 +-----+-----+ +-----+-----+-----+
 | | | | | | |
 | + | +-------------> | 200 | 300 | + |
 y +----------------> | | | | | | | | |
 +-----+-----+ +--> +-----+-----+-----+
 lemon_y +-+ | | ^ |
 | +----------------+ | |
 | +-----------+
 |
 | +-----+-----+ +-----+-----+-----+
 | | | | | | | |
 +-------> | + | +-------------> | 200 | 300 | + |
 | | | | | | | | |
 +-----+-----+ +--> +-----+-----+-----+
 | | ^ |
 +----------------+ | |
 +-----------+

 >>> x = [200, 300]
 >>> x.append(x)
 >>> y = [x, x] # this is the `y` from the doctests
 >>> lemon_y = lemon(y) # this is the `lemon_y` from the doctests
 >>> # check that lemon_y has the same structure as y

 >>> len(lemon_y)
 2
 >>> lemon_y[0] is lemon_y[1]
 True
 >>> len(lemon_y[0])
 3
 >>> lemon_y[0][0]
 200
 >>> lemon_y[0][1]
 300
 >>> lemon_y[0][2] is lemon_y[0]
 True
 >>> # check that lemon_y and y have no list objects in common
 >>> lemon_y is y
 False
 >>> lemon_y[0] is y[0]
 False
 """
 lemon_lookup = []
 def helper(xv):
 if isinstance(xv, int):
 return xv
 for old_new in lemon_lookup:
 if old_new[0] is xv:
 return old_new[1]
 new_xv = []
 lemon_lookup.append((xv, new_xv))
 for element in xv:
 new_xv.append(helper(element))
 return new_xv
 return helper(xv)
==

nth_repeating_seq
Point breakdown
 q5: 1.0/1

Score:
 Total: 1.0

Reskeletonized solution follows

==
def subsaltshaker(disk):
 "\n A 'saltshaker' is a sequence of digits of length `d` composed entirel¶
y of the digit `d`. Examples include\n 1\n 4444\n 7777777\n¶
\n Note that `1 <= d <= 9`; there are no 0-length saltshakers.\n\n Your ta¶
sk is to implement the `subsaltshaker` function, which takes in an integer `disk¶
` and returns\n whether `disk` contains a saltshaker as a consecutive sub¶
integer of its digits.\n\n >>> subsaltshaker(2233) # 22 counts\n True\n ¶
 >>> subsaltshaker(2444423) # 4444 counts\n True\n >>> subsaltshaker(82223¶
) # 22 counts even if it appears as part of 222\n True\n >>> subsaltshaker¶
(234562) # 2...2 does not count if the 2s are not consecutive\n False\n >>¶
> subsaltshaker(1) # 1 counts\n True\n >>> subsaltshaker(498729879871) # 1¶
 counts\n True\n >>> subsaltshaker(149872987987) # 1 counts\n True\n ¶
 >>> subsaltshaker(4445555) # no saltshakers in this number\n False\n >>> ¶
subsaltshaker(20) # no saltshakers in this number\n False\n "
 current_digit = (disk % 10)
 count = 0
 while (disk != 0):
 last = (disk % 10)
 if (current_digit == last):
 count += 1
 else:
 count = 1
 current_digit = last
 if (count == current_digit):
 return True
 disk = (disk // 10)
 return False
==

Original code follows

==
def subsaltshaker(disk):
 """
 A 'saltshaker' is a sequence of digits of length `d` composed entirely of th¶
e digit `d`. Examples include
 1
 4444
 7777777

 Note that `1 <= d <= 9`; there are no 0-length saltshakers.

 Your task is to implement the `subsaltshaker` function, which takes in an in¶

teger `disk` and returns
 whether `disk` contains a saltshaker as a consecutive subinteger of its ¶
digits.

 >>> subsaltshaker(2233) # 22 counts
 True
 >>> subsaltshaker(2444423) # 4444 counts
 True
 >>> subsaltshaker(82223) # 22 counts even if it appears as part of 222
 True
 >>> subsaltshaker(234562) # 2...2 does not count if the 2s are not consecuti¶
ve
 False
 >>> subsaltshaker(1) # 1 counts
 True
 >>> subsaltshaker(498729879871) # 1 counts
 True
 >>> subsaltshaker(149872987987) # 1 counts
 True
 >>> subsaltshaker(4445555) # no saltshakers in this number
 False
 >>> subsaltshaker(20) # no saltshakers in this number
 False
 """
 current_digit = disk % 10
 count = 0
 while disk != 0:
 last = disk % 10
 if current_digit == last:
 count += 1
 else:
 count = 1
 current_digit = last
 if count == current_digit:
 return True
 disk = disk // 10
 return False
==

copycat
Point breakdown
 q6: 1.0/1

Score:
 Total: 1.0

Reskeletonized solution follows

==
def copycat(lst1, lst2):
 "\n Write a function `copycat` that takes in two lists.\n `lst1` i¶
s a list of strings\n `lst2` is a list of integers\n\n It returns a ne¶
w list where every element from `lst1` is copied the\n number of times as the¶
 corresponding element in `lst2`. If the number\n of times to be copied is ne¶
gative (-k), then it removes the previous\n k elements added.\n\n Note 1: ¶
`lst1` and `lst2` do not have to be the same length, simply ignore\n any extr¶
a elements in the longer list.\n\n Note 2: you can assume that you will never¶
 be asked to delete more\n elements than exist\n\n\n >>> copycat(['a', 'b'¶
, 'c'], [1, 2, 3])\n ['a', 'b', 'b', 'c', 'c', 'c']\n >>> copycat(['a', 'b¶
', 'c'], [3])\n ['a', 'a', 'a']\n >>> copycat(['a', 'b', 'c'], [0, 2, 0])\¶
n ['b', 'b']\n >>> copycat([], [1,2,3])\n []\n >>> copycat(['a', 'b'¶
, 'c'], [1, -1, 3])\n ['c', 'c', 'c']\n "

 def copycat_helper(lst1, lst2, lst_so_far):
 if ((len(lst1) == 0) or (len(lst2) == 0)):
 return lst_so_far
 if (lst2[0] >= 0):
 lst_so_far = (lst_so_far + [lst1[0] for _ in range(lst2[0])])
 else:
 lst_so_far = lst_so_far[:lst2[0]]
 return copycat_helper(lst1[1:], lst2[1:], lst_so_far)
 return copycat_helper(lst1, lst2, [])
==

Original code follows

==
def copycat(lst1, lst2):
 """
 Write a function `copycat` that takes in two lists.
 `lst1` is a list of strings
 `lst2` is a list of integers

 It returns a new list where every element from `lst1` is copied the
 number of times as the corresponding element in `lst2`. If the number
 of times to be copied is negative (-k), then it removes the previous
 k elements added.

 Note 1: `lst1` and `lst2` do not have to be the same length, simply ignore
 any extra elements in the longer list.

 Note 2: you can assume that you will never be asked to delete more

 elements than exist

 >>> copycat(['a', 'b', 'c'], [1, 2, 3])
 ['a', 'b', 'b', 'c', 'c', 'c']
 >>> copycat(['a', 'b', 'c'], [3])
 ['a', 'a', 'a']
 >>> copycat(['a', 'b', 'c'], [0, 2, 0])
 ['b', 'b']
 >>> copycat([], [1,2,3])
 []
 >>> copycat(['a', 'b', 'c'], [1, -1, 3])
 ['c', 'c', 'c']
 """
 def copycat_helper(lst1, lst2, lst_so_far):
 if len(lst1) == 0 or len(lst2) == 0:
 return lst_so_far
 if lst2[0] >= 0:
 lst_so_far = lst_so_far + [lst1[0] for _ in range(lst2[0])]
 else:
 lst_so_far = lst_so_far[:lst2[0]]
 return copycat_helper(lst1[1:], lst2[1:], lst_so_far)
 return copycat_helper(lst1, lst2, [])
==

flatmap_tree
Point breakdown
 q7: 1.0/1

Score:
 Total: 1.0

Reskeletonized solution follows

==
def village(apple, t):
 '\n The `village` operation takes\n a function `apple` that maps a¶
n integer to a tree where\n every label is an integer.\n a tre¶
e `t` whose labels are all integers\n\n And applies `apple` to every label in¶
 `t`.\n\n To recombine this tree of trees into a a single tree,\n simp¶
ly copy all its branches to each of the leaves\n of the new tree.\n\n ¶
For example, if we have\n apple(x) = tree(x, [tree(x + 1), tree(x + 2)])\¶
n and\n t = 10\n / 20 ¶
 30\n\n We should get the output\n\n village(apple, t)\n = ¶
 10\n / ¶
/ 11 12\n / ¶
 \\ / 20 30 20 30\n ¶
 / \\ / \\ / \\ / 21 22 31 32 21 22 31 ¶
32\n >>> t = tree(10, [tree(20), tree(30)])\n >>> apple = lambda x: tree(x¶
, [tree(x + 1), tree(x + 2)])\n >>> print_tree(village(apple, t))\n 10\n ¶
 11\n 20\n 21\n 22\n 30\n 31\n ¶
 32\n 12\n 20\n 21\n 22\n 30\n ¶
31\n 32\n '

 def graft(t, bs):
 '\n Grafts the given branches `bs` onto each leaf\n of the¶
 given tree `t`, returning a new tree.\n '
 if is_leaf(t):
 return tree(label(t), bs)
 new_branches = [graft(b, bs) for b in branches(t)]
 return tree(label(t), new_branches)
 base_t = apple(label(t))
 bs = [village(apple, b) for b in branches(t)]
 return graft(base_t, bs)

def tree(label, branches=[]):
 'Construct a tree with the given label value and a list of branches.'
 for branch in branches:
 assert is_tree(branch), 'branches must be trees'
 return ([label] + list(branches))

def label(tree):
 'Return the label value of a tree.'
 return tree[0]

def branches(tree):
 'Return the list of branches of the given tree.'
 return tree[1:]

def is_tree(tree):
 'Returns True if the given tree is a tree, and False otherwise.'
 if ((type(tree) != list) or (len(tree) < 1)):
 return False
 for branch in branches(tree):
 if (not is_tree(branch)):
 return False
 return True

def is_leaf(tree):
 "Returns True if the given tree's list of branches is empty, and False\n ¶
otherwise.\n "
 return (not branches(tree))

def print_tree(t, indent=0):
 'Print a representation of this tree in which each node is\n indented by ¶
two spaces times its depth from the entry.\n '
 print(((' ' * indent) + str(label(t))))
 for b in branches(t):
 print_tree(b, (indent + 1))
==

Original code follows

==
def village(apple, t):
 """
 The `village` operation takes
 a function `apple` that maps an integer to a tree where
 every label is an integer.
 a tree `t` whose labels are all integers

 And applies `apple` to every label in `t`.

 To recombine this tree of trees into a a single tree,
 simply copy all its branches to each of the leaves
 of the new tree.

 For example, if we have
 apple(x) = tree(x, [tree(x + 1), tree(x + 2)])
 and
 t = 10
 / \
 20 30

 We should get the output

 village(apple, t)
 = 10
 / \
 / \
 11 12
 / \ / \

 20 30 20 30
 / \ / \ / \ / \
 21 22 31 32 21 22 31 32
 >>> t = tree(10, [tree(20), tree(30)])
 >>> apple = lambda x: tree(x, [tree(x + 1), tree(x + 2)])
 >>> print_tree(village(apple, t))
 10
 11
 20
 21
 22
 30
 31
 32
 12
 20
 21
 22
 30
 31
 32
 """
 def graft(t, bs):
 """
 Grafts the given branches `bs` onto each leaf
 of the given tree `t`, returning a new tree.
 """
 if is_leaf(t):
 return tree(label(t), bs)
 new_branches = [graft(b, bs) for b in branches(t)]
 return tree(label(t), new_branches)
 base_t = apple(label(t))
 bs = [village(apple, b) for b in branches(t)]
 return graft(base_t, bs)

def tree(label, branches=[]):
 """Construct a tree with the given label value and a list of branches."""
 for branch in branches:
 assert is_tree(branch), 'branches must be trees'
 return [label] + list(branches)

def label(tree):
 """Return the label value of a tree."""
 return tree[0]

def branches(tree):
 """Return the list of branches of the given tree."""
 return tree[1:]

def is_tree(tree):
 """Returns True if the given tree is a tree, and False otherwise."""
 if type(tree) != list or len(tree) < 1:
 return False

 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def is_leaf(tree):
 """Returns True if the given tree's list of branches is empty, and False
 otherwise.
 """
 return not branches(tree)

def print_tree(t, indent=0):
 """Print a representation of this tree in which each node is
 indented by two spaces times its depth from the entry.
 """
 print(' ' * indent + str(label(t)))
 for b in branches(t):
 print_tree(b, indent + 1)
==

