Exam CS61A Summer 2020 M dterm

Name: Sol ution Key

Emai | . exanpl e_key

secure

Point breakdown

ql: 1.0/1
Score:
Total: 1.0

Reskeletonized solution follows

def cat(password, limit):

" Write a higher-order function “cat® that returns a one-argument\n funct9
ion “attempt’. Every time “attempt® is called, it checks to see if its argument\9
n matches the password at the corresponding index.\n\n If the password ent9
irely matches, return a success string. If more than “limit \n number of inco9
rrect hacks are attempted, you should return an error string.\n For details, 9
see the doctest.\n\n\n Note: to comment out a blank that covers an entire 1lin9
e, just put down 'unnecessary' (with quotes)\n\n >>> hacker = cat([1,2], 2)\n4

>>> hacker(1)\n >>> hacker(2)\n 'Successfully unlocked!'\n >>> hack9
er = cat([1,2], 1)\n >>> hacker(1)\n >>> hacker(3) # used up attempts to g9
ain access\n >>> hacker(2) # correct attempt to gain access, but already lock9
ed\n 'The safe is now inaccessible!'\n >>> hacker = cat([1,2], 2)\n >>>4

hacker(1)\n >>> hacker(3) # 1 attempt left to gain access\n >>> hacker(2)4
correct attempt to gain access\n "Successfully unlocked!'\n "
num_incorrect = 0
index = 0

def attempt(digit):
nonlocal num_incorrect
nonlocal index
if (num_incorrect >= limit):
return 'The safe is now inaccessible!'’

if (password[index] == digit):
index += 1
if (index == len(password)):

return 'Successfully unlocked!'

else:
num_incorrect += 1
return attempt

def cat(password, limit):

""" Write a higher-order function ‘cat” that returns a one-argument

function “attempt’. Every time “attempt® is called, it checks to see if its ¢
argument

matches the password at the corresponding index.

If the password entirely matches, return a success string. If more than “1lim9
it’
number of incorrect hacks are attempted, you should return an error string.

For details, see the doctest.

Note: to comment out a blank that covers an entire line, just put down 'unne9
cessary' (with quotes)

>>> hacker = cat([1,2], 2)
>>> hacker(1)
>>> hacker(2)
'Successfully unlocked!'
>>> hacker = cat([1,2], 1)
>>> hacker (1)
>>> hacker(3) # used up attempts to gain access
>>> hacker(2) # correct attempt to gain access, but already locked
'The safe is now inaccessible!’
>>> hacker = cat([1,2], 2)
>>> hacker (1)
>>> hacker(3) # 1 attempt left to gain access
>>> hacker(2) # correct attempt to gain access
'Successfully unlocked!'
num_incorrect = 0
index = 0
def attempt(digit):

nonlocal num_incorrect

nonlocal index

if num_incorrect >= limit:

return 'The safe is now inaccessible!"

if password[index] == digit:
index += 1
if index == len(password):

return "Successfully unlocked!"
else:
num_incorrect += 1
return attempt

schedule

Point breakdown

gq2: 1.0/1
Score:
Total: 1.0

Reskeletonized solution follows

def schedule(galaxy, sum_to, max_digit):

"\n A \'galaxy\' is a string which contains either digits or \'?\'s.\n\n ¢
A \'completion\' of a galaxy is a string that is the same as galaxy, except\n4
with digits replacing each of the \'?\'s.\n\n Your task in this question ¢
is to find all completions of the given “galaxy \n that use digits up to “max9
_digit’, and whose digits sum to “sum_to .\n\n Note 1: the function int can b9
e used to convert a string to an integer and str\n can be used to convert9
an integer to a string as such:\n\n >>> int("5")\n 5\n >>>4
str(5)\n \'5\"\n\n Note 2: Indexing and slicing can be used on string9
s as well as on lists.\n\n >>> \'evocative\'[3]\n \'c\'\n >4
>> \'evocative\'[3:]\n \'cative\'\n >>> \'evocative\'[:6]\n q
\'evocat\'\n >>> \'evocative\'[3:6]\n \'cat\'\n\n\n >>> schedut
le(\'????2?\', 25, 5)\n [\'55555\"']\n >>> schedule(\'???\', 5, 2)\n [\'14
22\', \'212\', \'221\']\n >>> schedule(\'?2??11?\', 5, 3)\n [\'62060111\"', 4

\'0201110\', \'0210110\', \'1200110\']\n '

def schedule_helper(galaxy, sum_sofar, index):
if ((index >= len(galaxy)) and (sum_sofar == sum_to)):
return [galaxy]
elif ((sum_sofar > sum_to) or (index >= len(galaxy))):

return []
elif (galaxy[index] != '?'):
return schedule_helper(galaxy, (sum_sofar + int(galaxy[index])), (in9
dex + 1))
ans = []

for x in range((max_digit + 1)):
modified_galaxy = ((galaxy[:index] + str(x)) + galaxy[(index + 1):])4

ans += schedule_helper(modified_galaxy, (sum_sofar + x), (index + 1)9¢

return ans
return schedule_helper(galaxy, 0, 0)

def schedule(galaxy, sum_to, max_digit):

A 'galaxy' is a string which contains either digits or '?'s.

A 'completion' of a galaxy is a string that is the same as galaxy, except
with digits replacing each of the '?'s.

Your task in this question is to find all completions of the given “galaxy"’
that use digits up to "max_digit®, and whose digits sum to “sum_to’.

Note 1: the function int can be used to convert a string to an integer and s
tr
can be used to convert an integer to a string as such:

55> in_t(Il5ll)

>>> str(5)
I5l

Note 2: Indexing and slicing can be used on strings as well as on lists.

>>> 'evocative'[3]
o

>>> 'evocative'[3:]
"cative'

>>> 'evocative'[:6]
'evocat’

>>> 'evocative'[3:6]

‘cat'’

>>> schedule('?????', 25, 5)
['55555"]
>>> schedule('???', 5, 2)
['122', '212", '221']
>>> schedule('?2??11?', 5, 3)
['e200111', '6201110', '©210110', '1200110']
def schedule_helper(galaxy, sum_sofar, index):
if index >= len(galaxy) and sum_sofar == sum_to:
return [galaxy]
elif sum_sofar > sum_to or index >= len(galaxy):
return []
elif galaxy[index] !'= '?':
return schedule_helper(galaxy, sum_sofar + int(galaxy[index]), index9

ans = []
for x in range(max_digit + 1):
modified_galaxy = galaxy[:index] + str(x) + galaxy[index + 1:]
ans += schedule_helper(modified_galaxy, sum_sofar + x, index + 1)
return ans

return schedule_helper(galaxy, 0, 0)

consume

Point breakdown

q3: 1.0/1
Score:
Total: 1.0

Reskeletonized solution follows

"\nLet a “painting’ be a self-referential function that\n - takes in one inte9
ger\n - returns two values, another painting and well as an integer\n\nFor ant
example see the function ‘identity_painting" below.\n\nYou have two tasks in th9
is assignment, to implement the functions ‘microscope \nand “plush’. Both have t4
heir behavior defined by their doctests.\n\nIt is not necessary to implement “mif
croscope” correctly to get the points for\n'plush’. However, the ok test cases f9
or “plush” will fail if you have not correctly\nimplemented “microscope .\n'

def identity_painting(x):
return (identity_painting, x)

def microscope(a=0, s=1):

"\n This function returns a painting function that processes a sequence\nt

of integers, and returns the alternating sum of all integers seen thus\n 9

far (see doctest for an example).\n\n >>> painting_a = microscope()\n >>> 4
painting_b, x = painting_a(2)\n >>> X # 2\n4
2\n >>> painting_c, X = painting_b(8)\n >>> X 1

2 - 8\n -6\n >>> painting_d, x = painting_c(12)\n >>> X q

#2 -8 + 12\n 6\n >>> painting_e, x = pain9

ting_d(30)\n >>> X #2 -8+ 12 - 30\n -9
24\n >>> painting_b_again, x = painting_a(108)\n >>> X q

100 [note that we are using painting_a not painting_d here]\n ¢
100\n '

def painting(x):
return (microscope((a + (s * x)), (-_s)), (a + (s * x)))
return painting

def plush(painting, items):

"\n The function “plush” takes in a “painting’ and a nonempty list of “it9
ems” and\n runs the given “painting” on each of the “items™ in turn, returnin9
g the final\n numeric result.\n\n For example, on the items [1, 2, 3, 4, 54
] with the painting microscope\n we return 1 - 2 + 3 - 4 +5 = 3\n\n >>> p4q
lush(microscope(), [1, 2, 3, 4, 5])\n 3\n >>> plush(microscope(), [4000])\4
n 4000\n >>> plush(microscope(), [2, 90])\n -88\n >>> plush(identity4
_painting, [2, 90])\n 90\n '

(painting, x) = painting(items[0])

if (len(items) == 1):

return x
return plush(painting, items[1:])

Original code follows

Let a “painting’ be a self-referential function that
- takes in one integer
- returns two values, another painting and well as an integer

For an example see the function “identity_painting® below.

You have two tasks in this assignment, to implement the functions “microscope
and “plush’. Both have their behavior defined by their doctests.

It is not necessary to implement “microscope’ correctly to get the points for
“plush”. However, the ok test cases for “plush’ will fail if you have not correct
tly

implemented “microscope’.

def identity_painting(x):
return identity_painting, x

def microscope(a=0, s=1):
This function returns a painting function that processes a sequence
of integers, and returns the alternating sum of all integers seen thus
far (see doctest for an example).

>>> painting_a = microscope()
>>> painting_b, x = painting_a(2)

>>> X # 2

2

>>> painting_c, x = painting_b(8)

>>> X #2 -8

-6

>>> painting_d, x = painting_c(12)

>>> X #2 -8+ 12

6

>>> painting_e, x = painting_d(30)

>>> X #2 -8+ 12 - 30

-24

>>> painting_b_again, x = painting_a(100)

>>> X # 100 [note that we are using paintif
ng_a not painting_d here]

100

def painting(x):
return microscope(a + s * x, -s), a + s * x
return painting

def plush(painting, items):

The function “plush® takes in a “painting’ and a nonempty list of “items” an9

runs the given “painting” on each of the “items" in turn, returning the fina94
numeric result.

For example, on the items [1, 2, 3, 4, 5] with the painting microscope
we return 1 -2 +3 -4 +5 =3

>>> plush(microscope(), [1, 2, 3, 4, 5])

3

>>> plush(microscope(), [46000])

4000

>>> plush(microscope(), [2, 90])

-88

>>> plush(identity_painting, [2, 90])
920

painting, x = painting(items[0])
if len(items) ==

return Xx
return plush(painting, items[1:])

exact_copy

Point breakdown

qd: 1.0/1
Score:
Total: 1.0

Reskeletonized solution follows

def lemon(xv):

"\n A lemon-copy is a perfect replica of a nested list\'s box-and-pointer9
structure.\n If an environment diagram were drawn out, the two should be9
entirely\n separate but identical.\n\n A “xv' is a list that only con9

tains ints and other lists.\n\n The function “lemon” generates a lemon-copy of
f the given list “xv'.\n\n Note: The ‘isinstance” function takes in a value af
nd a type and determines\n whether the value is of the given type. So\n\n9
>>> isinstance("abc", str)\n True\n >>> isinstance("abc", 9
list)\n False\n\n Here\'s an example, where lemon_y = lemon(y)\n\n\n ¢
T S + R +-——— e +\n q
I I ‘
| + | +---—————- > | 200 | 300 | + |\n y +------ q
—————————— > 1 T ‘
+-———- +-——-- + +--> +---—- +-———- +-———- +\n lemon_y +-+ q
| | " \n | +--4
—————————————— + | [\n | q
Fo—m - +\n [\n [+9

————— +-—-——+ +-—-——4-————4-————+\n | |
| I Y #ommoe > |+]+
———————————— > | 200 | 3606 | + |\n [| | q
| [| | |\n +----- +----- + +9
-=> $-==== - to———- +\n | | q
A [\n LR P L P L + | q
[\n L +\4
n\n >>> X = [200, 308]\n >>> x.append(x)\n >>> y = [x, x] q
this is the 'y from the doctests\n >>> lemon_y = lemon(y) # this is t4
he “lemon_y" from the doctests\n >>> # check that lemon_y has the same struct9
ure as y\n >>> len(lemon_y)\n 2\n >>> lemon_y[@] is lemon_y[1]\n Trud

e\n >>> len(lemon_y[8])\n 3\n >>> lemon_y[0][0]\n 200\n >>> lemon9
_yle]l[1]\n 300\n >>> lemon_y[0][2] is lemon_y[@]\n True\n >>> # chect
k that lemon_y and y have no list objects in common\n >>> lemon_y is y\n F9
alse\n >>> lemon_y[@] is y[@]\n False\n '

lemon_lookup = []

def helper(xv):
if isinstance(xv, int):
return xv
for old_new in lemon_lookup:
if (old_new[@] is xv):
return old_new[1]
new_xv = []
lemon_lookup.append((xv, new_xv))
for element in xv:

new_xv.append(helper(element))
return new_xv
return helper(xv)

def lemon(xv):
A lemon-copy is a perfect replica of a nested list's box-and-pointer structu9
re.
If an environment diagram were drawn out, the two should be entirely
separate but identical.

A “xv' is a list that only contains ints and other lists.
The function “lemon’ generates a lemon-copy of the given list “xv'.

Note: The “isinstance’ function takes in a value and a type and determines
whether the value is of the given type. So

>>> isinstance("abc", str)
True
>>> isinstance("abc", list)
False

Here's an example, where lemon_y = lemon(y)

e +-———- + +-———- +-———- R e +
I I I I I I I
| + | #=--mmmm—eeee > | 200 | 300 | + |
Y #mmmmmmmmmeee- > I N
o= o + +-=> Fo—m—m e o +
lemon_y +-+ | | A |
I tommmmmmm e + | I
| R +
I
| R o + el s o +
I I I I I I I I
Fo—————- > | + | H-mmmm————————- > | 200 | 300 | + |
I I I I I
i e + +-=> Fo—mmm R i +
I I " I
e e e e + | |
Fmmm e +
>>> x = [200, 300]
>>> x.append(x)
>>> y = [x, x] # this is the 'y from the doctests
>>> lemon_y = lemon(y) # this is the “lemon_y" from the doctests

>>> # check that lemon_y has the same structure as y

>>> len(lemon_y)

2

>>> lemon_y[@0] is lemon_y[1]
True

>>> len(lemon_y[@])

3

>>> lemon_y[0][0]

200

>>> lemon_y[0][1]

300

>>> lemon_y[0][2] is lemon_y[0]
True

>>> # check that lemon_y and y have no list objects in common
>>> lemon_y is y
False
>>> lemon_y[0] is y[0]
False
lemon_lookup = []
def helper(xv):
if isinstance(xv, int):
return xv
for old_new in lemon_lookup:
if old_new[@] is xv:
return old_new[1]
new_xv = []
lemon_lookup.append((xv, new_xv))
for element in xv:
new_xv .append(helper(element))
return new_xv
return helper(xv)

nth_repeating_seq

Point breakdown

q5: 1.0/1
Score:
Total: 1.0

Reskeletonized solution follows

def subsaltshaker(disk):

"\n A 'saltshaker' is a sequence of digits of length ‘d° composed entireld
y of the digit "d’. Examples include\n 1\n 4444\n 7777777\n4
\n Note that "1 <= d <= 9°; there are no 0-length saltshakers.\n\n Your tat
sk is to implement the “subsaltshaker” function, which takes in an integer “disk9
* and returns\n whether “disk’ contains a saltshaker as a consecutive sub9
integer of its digits.\n\n >>> subsaltshaker(2233) # 22 counts\n True\n 9
>>> subsaltshaker(2444423) # 4444 counts\n True\n >>> subsaltshaker (822234
) # 22 counts even if it appears as part of 222\n True\n >>> subsaltshaker9
(234562) # 2...2 does not count if the 2s are not consecutive\n False\n >>4
> subsaltshaker (1) # 1 counts\n True\n >>> subsaltshaker(498729879871) # 14
counts\n True\n >>> subsaltshaker(149872987987) # 1 counts\n True\n ¢
>>> subsaltshaker(4445555) # no saltshakers in this number\n False\n >>> 4

subsaltshaker(20) # no saltshakers in this number\n False\n "
current_digit = (disk % 10)
count = @

while (disk '= 8):
last = (disk % 10)

if (current_digit == last):

count += 1
else:
count = 1
current_digit = last
if (count == current_digit):

return True

disk = (disk // 10)
return False

def subsaltshaker(disk):
A 'saltshaker' is a sequence of digits of length "d’ composed entirely of th9
e digit 'd°. Examples include
1
4444
7777777

Note that "1 <= d <= 9°; there are no 0-length saltshakers.

Your task is to implement the “subsaltshaker®™ function, which takes in an in9

teger “disk’ and returns
whether ‘disk’ contains a saltshaker as a consecutive subinteger of its 9
digits.

>>> subsaltshaker(2233) # 22 counts

True

>>> subsaltshaker(2444423) # 4444 counts

True

>>> subsaltshaker(82223) # 22 counts even if it appears as part of 222

True

>>> subsaltshaker(234562) # 2...2 does not count if the 2s are not consecutif
ve

False

>>> subsaltshaker(1) # 1 counts

True

>>> subsaltshaker(498729879871) # 1 counts

True

>>> subsaltshaker(149872987987) # 1 counts

True

>>> subsaltshaker(4445555) # no saltshakers in this number

False

>>> subsaltshaker(20) # no saltshakers in this number

False

current_digit = disk % 10

count = 0@

while disk != @:

last = disk % 10

if current_digit == last:
count += 1

else:
count = 1
current_digit = last

if count == current_digit:

return True
disk = disk // 10
return False

copycat

Point breakdown

q6: 1.0/1
Score:
Total: 1.0

Reskeletonized solution follows

def copycat(lst1l, 1lst2):
"\n Write a function ‘copycat® that takes in two lists.\n “1st1” id
s a list of strings\n "1st2” is a list of integers\n\n It returns a net
w list where every element from “1lst1’ is copied the\n number of times as thef
corresponding element in “1lst2°. If the number\n of times to be copied is ne9
gative (-k), then it removes the previous\n k elements added.\n\n Note 1: ¢
"1st1” and "1lst2° do not have to be the same length, simply ignore\n any extr9
a elements in the longer list.\n\n Note 2: you can assume that you will never9
be asked to delete more\n elements than exist\n\n\n >>> copycat(['a', 'b'4
, 'c']l, [1, 2, 3])\n ['a', 'b', 'b', '¢', '¢', 'c¢']\n >>> copycat(['a', 'b4
', 'c']l, [3])\n ['a', 'a', 'a']\n >>> copycat(['a', 'b', 'c'], [0, 2, 0])\4
n ['b", 'b']\n >>> copycat([], [1,2,3])\n [T\n >>> copycat(['a', 'b'¢
, 'c¢'l, [1, -1, 3D\n ['ce', 'c¢', '¢']\n "

def copycat_helper(lst1, 1lst2, lst_so_far):
if ((len(1lst1) == B8) or (len(lst2) == 0)):
return lst_so_far
if (1st2[@] >= 0):
1st_so_far = (1st_so_far + [1st1[0] for _ in range(1lst2[0])])
else:
1st_so_far = 1lst_so_far[:1st2[0]]
return copycat helper(1st1[1:], 1st2[1:], 1st_so_far)
return copycat_helper(lst1, 1st2, [])

def copycat(lst1l, 1st2):
Write a function ‘copycat”™ that takes in two lists.
“1st1” is a list of strings
"1st2” is a list of integers

It returns a new list where every element from “1lst1’ is copied the
number of times as the corresponding element in “1st2°. If the number
of times to be copied is negative (-k), then it removes the previous
k elements added.

Note 1: “1st1” and "1lst2" do not have to be the same length, simply ignore
any extra elements in the longer list.

Note 2: you can assume that you will never be asked to delete more

elements than exist

>>> copycat(['a', 'b', 'c'], [1, 2, 3])
[Ial' lbl, lbl' lcl' ICI, |c|]
>>> copycat(['a', 'b', 'c'], [3])

['all lal, 'aI]
>>> copycat(['a’, 'b', 'c'], [0, 2, @])
['b", 'b']

>>> copycat([], [1,2,3])

[]
>>> copycat(['a', 'b', 'c'], [1, -1, 3])
['e', 'e', 'c']
def copycat_helper(lst1, 1lst2, lst_so_far):
if len(1lst1) == @ or len(lst2) == @:
return lst_so_far
if 1st2[0] >= 0:
1st_so_far
else:
1st_so_far = 1lst_so_far[:1st2[0]]
return copycat_helper(lst1[1:], 1st2[1:], 1lst_so_far)
return copycat_helper(1lst1, 1lst2, [])

lst_so_far + [1lst1[@] for _ in range(1lst2[0])]

flatmap_tree

Point breakdown

q7: 1.0/1
Score:
Total: 1.0

Reskeletonized solution follows

def village(apple, t):

"\n The “village®™ operation takes\n a function ‘apple” that maps a“

n integer to a tree where\n every label is an integer.\n a tre9
e "t whose labels are all integers\n\n And applies “apple’ to every label in9
“tT.\n\n To recombine this tree of trees into a a single tree, \n simp9d

ly copy all its branches to each of the leaves\n of the new tree.\n\n 9
For example, if we have\n apple(x) = tree(x, [tree(x + 1), tree(x + 2)])\4
n and\n t = 10\n / 20 q
30\n\n We should get the output\n\n village(apple, t)\n = 9
10\n / q

/ 11 12\n / 1
\\ / 20 30 20 30\n q

/ \\ / \\ / \\ / 2122 31 32 21 22 31 9

32\n >>> t = tree(10, [tree(20), tree(30)])\n >>> apple = lambda x: tree(x9
, [tree(x + 1), tree(x + 2)])\n >>> print_tree(village(apple, t))\n 10\n ¢

11\n 20\n 21\n 22\n 30\n 31\n q
32\n 12\n 20\n 21\n 22\n 30\n q
31\n 32\n '

def graft(t, bs):
‘\n Grafts the given branches ‘bs™ onto each leaf\n of thed
given tree “t°, returning a new tree.\n '
if is_leaf(t):
return tree(label(t), bs)
new_branches = [graft(b, bs) for b in branches(t)]
return tree(label(t), new_branches)
base_t = apple(label(t))
bs = [village(apple, b) for b in branches(t)]
return graft(base_t, bs)

def tree(label, branches=[]):
'Construct a tree with the given label value and a list of branches.'
for branch in branches:
assert is_tree(branch), 'branches must be trees'
return ([label] + list(branches))

def label(tree):
'Return the label value of a tree.'
return tree[0]

def branches(tree):
'Return the list of branches of the given tree.'
return tree[1:]

def

def

otherwise.\n

def

two

def

is_tree(tree):
'Returns True if the given tree is a tree, and False otherwise.'
if ((type(tree) != list) or (len(tree) < 1)):

return False
for branch in branches(tree):

if (not is_tree(branch)):

return False

return True

is_leaf(tree):

"Returns True if the given tree's list of branches is empty, and False\n 9

return (not branches(tree))

print_tree(t, indent=0):
'Print a representation of this tree in which each node is\n
spaces times its depth from the entry.\n '
print(((' ' * indent) + str(label(t))))
for b in branches(t):
print_tree(b, (indent + 1))

village(apple, t):
The “village®™ operation takes
a function ‘apple’ that maps an integer to a tree where
every label is an integer.
a tree "t whose labels are all integers

And applies “apple’ to every label in "t°.

To recombine this tree of trees into a a single tree,
simply copy all its branches to each of the leaves
of the new tree.

For example, if we have
apple(x) = tree(x, [tree(x + 1), tree(x + 2)])
and
t = 10
/ \
20 30

We should get the output
village(apple, t)

= 10

11 12

indented by ¢

20 30 20 30
/ \ / \ / \ / \
21 22 31 32 21 22 31 32
>>> t = tree(10, [tree(20), tree(30)])
>>> apple = lambda x: tree(x, [tree(x + 1), tree(x + 2)])
>>> print_tree(village(apple, t))
10
11
20
21
22
30
31
32
12
20
21
22
30
31
32

def graft(t, bs):
Grafts the given branches "bs” onto each leaf
of the given tree "t°, returning a new tree.

if is_leaf(t):
return tree(label(t), bs)
new_branches = [graft(b, bs) for b in branches(t)]
return tree(label(t), new_branches)
base_t = apple(label(t))
bs = [village(apple, b) for b in branches(t)]
return graft(base_t, bs)

def tree(label, branches=[]):
"""Construct a tree with the given label value and a list of branches."""
for branch in branches:
assert is_tree(branch), 'branches must be trees'
return [label] + list(branches)

def label(tree):
"""Return the label value of a tree."""
return tree[0]

def branches(tree):
"""Return the list of branches of the given tree."""
return tree[1:]

def is_tree(tree):
"""Returns True if the given tree is a tree, and False otherwise."""
if type(tree) != list or len(tree) < 1:
return False

for branch in branches(tree):
if not is_tree(branch):
return False
return True

def is_leaf(tree):
"""Returns True if the given tree's list of branches is empty, and False
otherwise.

return not branches(tree)

def print_tree(t, indent=0):
"""Print a representation of this tree in which each node is
indented by two spaces times its depth from the entry.
print(' ' * indent + str(label(t)))
for b in branches(t):
print_tree(b, indent + 1)

